Abstract-Sirt7 is a member of the mammalian sirtuin family consisting of 7 genes, Sirt1 to Sirt7, which all share a homology to the founding family member, the yeast Sir2 gene. Most sirtuins are supposed to act as histone/protein deacetylases, which use oxidized NAD in a sirtuin-specific, 2-step deacetylation reaction. To begin to decipher the biological role of Sirt7, we inactivated the Sirt7 gene in mice. Sirt7-deficient animals undergo a reduction in mean and maximum lifespans and develop heart hypertrophy and inflammatory cardiomyopathy. Sirt7 mutant hearts are also characterized by an extensive fibrosis, which leads to a 3-fold increase in collagen III accumulation. We found that Sirt7 interacts with p53 and efficiently deacetylates p53 in vitro, which corresponds to hyperacetylation of p53 in vivo and an increased rate of apoptosis in the myocardium of mutant mice. Sirt7-deficient primary cardiomyocytes show a Ϸ200% increase in basal apoptosis and a significantly diminished resistance to oxidative and genotoxic stress suggesting a critical role of Sirt7 in the regulation of stress responses and cell death in the heart. We propose that enhanced activation of p53 by lack of Sirt7-mediated deacetylation contributes to the heart phenotype of Sirt7 mutant mice. (Circ Res. 2008;102:703-710.)
Sirtuins (Sirt1-Sirt7) are NAD + -dependent protein deacetylases/ ADP ribosyltransferases, which play decisive roles in chromatin silencing, cell cycle regulation, cellular differentiation, and metabolism. Different sirtuins control similar cellular processes, suggesting a coordinated mode of action but information about potential cross-regulatory interactions within the sirtuin family is still limited. Here, we demonstrate that Sirt1 requires autodeacetylation to efficiently deacetylate targets such as p53, H3K9, and H4K16. Sirt7 restricts Sirt1 activity by preventing Sirt1 autodeacetylation causing enhanced Sirt1 activity in Sirt7 −/− mice. Increased Sirt1 activity in Sirt7 −/− mice blocks PPARγ and adipocyte differentiation, thereby diminishing accumulation of white fat. Thus, reduction of Sirt1 activity restores adipogenesis in Sirt7 −/− adipocytes in vitro and in vivo. We disclosed a principle controlling Sirt1 activity and uncovered an unexpected complexity in the crosstalk between two different sirtuins. We propose that antagonistic interactions between Sirt1 and Sirt7 are pivotal in controlling the signaling network required for maintenance of adipose tissue.sirtuin | acetylation | adipogenesis T he seven sirtuins in mammals (Sirt1-Sirt7) are involved in the regulation of essential cellular processes. Sirtuins rapidly adjust the activity of chromatin, transcription factors, metabolic enzymes, and structural proteins to cellular needs by deacetylating a broad range of targets. The ability to sense metabolic alterations and various stressors enable sirtuins to adapt cellular homeostasis to varying conditions. It seems likely that this feature of sirtuins is crucial to prevent age-dependent pathologies and promote a healthy lifespan (1, 2).Sirt1 is the most widely studied mammalian sirtuin showing the highest homology to the founding member of the sirtuin family, the yeast silence information regulator, Sir2. Sirt1 deacetylates histones H3K9, H3K56, H4K16, and H1K26 as well as many nonhistone targets thereby contributing to the maintenance of metabolic homeostasis and genomic integrity (3, 4). Sirt1 was also identified as a critical component of lifespan extension in response to calorie restriction in several model organisms, although its exact contribution is still under debate (5). The functions of Sirt7 have attracted less attention compared with Sirt1.
Autophagy maintains hematopoietic stem cell integrity and prevents malignant transformation. In addition to bulk degradation, selective autophagy serves as an intracellular quality control mechanism and requires autophagy receptors, such as p62 (SQSTM1), to specifically bridge the ubiquitinated cargos into autophagosomes. Here, we investigated the function of p62 in acute myeloid leukemia (AML) in vitro and in murine in vivo models of AML. Loss of p62 impaired expansion and colony-forming ability of leukemia cells and prolonged latency of leukemia development in mice. High p62 expression was associated with poor prognosis in human AML. Using quantitative mass spectrometry, we identified enrichment of mitochondrial proteins upon immunoprecipitation of p62. Loss of p62 significantly delayed removal of dysfunctional mitochondria, increased mitochondrial superoxide levels, and impaired mitochondrial respiration. Moreover, we demonstrated that the autophagy-dependent function of p62 is essential for cell growth and effective mitochondrial degradation by mitophagy. Our results highlight the prominent role of selective autophagy in leukemia progression, and specifically, the importance of mitophagy to maintain mitochondrial integrity.
Although innovative therapeutic concepts have led to better treatment of advanced renal cell carcinoma (RCC), efficacy is still limited due to the tumor developing resistance to applied drugs. Artesunate (ART) has demonstrated anti-tumor effects in different tumor entities. This study was designed to investigate the impact of ART (1–100 µM) on the sunitinib-resistant RCC cell lines, Caki-1, 786-O, KTCTL26, and A-498. Therapy-sensitive (parental) and untreated cells served as controls. ART’s impact on tumor cell growth, proliferation, clonogenic growth, apoptosis, necrosis, ferroptosis, and metabolic activity was evaluated. Cell cycle distribution, the expression of cell cycle regulating proteins, p53, and the occurrence of reactive oxygen species (ROS) were investigated. ART significantly increased cytotoxicity and inhibited proliferation and clonogenic growth in both parental and sunitinib-resistant RCC cells. In Caki-1, 786-O, and A-498 cell lines growth inhibition was associated with G0/G1 phase arrest and distinct modulation of cell cycle regulating proteins. KTCTL-26 cells were mainly affected by ART through ROS generation, ferroptosis, and decreased metabolism. p53 exclusively appeared in the KTCTL-26 cells, indicating that p53 might be predictive for ART-dependent ferroptosis. Thus, ART may hold promise for treating selected patients with advanced and even therapy-resistant RCC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.