Zero-dimensional models based on the description of the thermo-gas-dynamic process are widely used in the design of engines and their control and diagnostic systems. The models are subjected to an identification procedure to bring their outputs as close as possible to experimental data and assess engine health. This paper aims to improve the stability of engine model identification when the number of measured parameters is small, and their measurement error is not negligible. The proposed method for the estimation of engine components’ parameters, based on multi-criteria identification, provides stable estimations and their confidence intervals within known measurement errors. A priori information about the engine, its parameters and performance is used directly in the regularized identification procedure. The mathematical basis for this approach is the fuzzy sets theory. Synthesis of objective functions and subsequent scalar convolutions of these functions are used to estimate gas-path components’ parameters. A comparison with traditional methods showed that the main advantage of the proposed approach is the high stability of estimation in the parametric uncertainty conditions. Regularization reduces scattering, excludes incorrect solutions that do not correspond to a priori assumptions and also helps to implement the gas path analysis with a limited number of measured parameters. The method can be used for matching thermodynamic models to experimental data, gas path analysis and adapting dynamic models to the needs of the engine control system.
Gas Path Analysis and matching turbine engine models to experimental data are inverse problems of mathematical modelling which are characterized by parametric uncertainty. This results from the fact that the number of measured parameters is significantly lower than the number of components’ performance parameters needed to describe the real engine. In these conditions, even small measurement errors can result in a high variation of results, and obtained efficiency, loss factors etc. can appear out of the physical range. The current methods of engine model identification have developed considerably to provide stable, precise and physically adequate solutions. Presented in this work is an estimation method of engine components’ parameters based on multi-criteria identification which provides stable estimations of parameters and their confidence intervals with the known measurement errors. A priori information about the engine, its parameters and performance is used directly in the regularised identification procedure. The mathematical basis for this approach is the fuzzy sets theory. Forming objective functions and scalar convolutions synthesis of these functions is used to estimate gas-path components’ parameters. A comparison of the proposed approach with traditional methods showed that its main advantage is high stability of estimation in the parametric uncertainty conditions. Regularization reduces scattering, excludes incorrect solutions which do not correspond to a priori assumptions, and also helps to implement the Gas Path Analysis at the limited number of measured parameters. The method can be used for matching thermodynamic models to experimental data, Gas Path Analysis and also adapting dynamic models for the needs of the engine control system.
Gas Path Analysis and matching turbine engine models to experimental data are inverse problems of mathematical modelling which are characterized by parametric uncertainty. It results from the fact that the number of measured parameters is significantly less than the number of components’ performance parameters needed to describe the real engine. Inthese conditions, even small measurement errors can result in a high variation of results, and obtained efficiency, lossfactors etc. can appear out of the physical range. The paper presents new method for setting a priori information about the engine and its performance in view of fuzzy sets, forming objective functions and scalar convolutions synthesis of these functions to estimate gas-path components’ parameters. The comparison of the proposed approach with traditional methods showed that its main advantage is high stability of estimation in the parametric uncertainty conditions. It reduces scattering, excludes incorrect solutions which do not correspond to a priori assumptions, and also helps to implement the Gas Path Analysis at the limited number of measured parameters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.