Self-propelled underwater systems belong to the effective means of marine robotics. The advantages of their use include the ability to perform underwater work in real time with high quality and without risk to the life of a human operator. At present, the design of such complexes is not formalized and is carried out separately for each of the components – a remotely operated vehicle, a tether-cable and cable winch, a cargo device and a control and energy device. As a result, the time spent on design increases and its quality decreases. The system approach to the design of remotely operated complexes ensures that the features of the interaction of the components of the complex are taken into account when performing its main operating modes. In this paper, the system interaction between the components of the complex is proposed to take into account in the form of decomposition of “underwater tasks (mission) – underwater technology of its implementation – underwater work on the selected technology – task for the executive mechanism of the complex” operations. With this approach, an information base is formed for the formation of a list of mechanisms of the complex, the technical appearance of its components is being formed, which is important for the early design stages. Operative, creative and engineering phases of the design of the complex are proposed. For each phase, a set of works has been formulated that cover all the components of the complex and use the author's existence equations for these components as a tool for system analysis of technical solutions. The perspective of the scientific task of the creative phase to create accurate information models of the functioning of the components of the complex and models to support the adoption of design decisions based on a systematic approach is shown. The obtained results form the theoretical basis for finding effective technical solutions in the early stages of designing remotely operated complexes and for automating the design with the assistance of modern applied computer research and design packages.
The design stage is considered to be rather resource-intensive in the entire process of creating marine robotic technology. Therefore, the applied scientific task of reducing the resource costs for those processes is of high interest. Among other things, the time consumed for design stage has to be reduced by determining the design characteristics at an early stage of design. The approach considered to reduce such costs involves structuring the classification features of tethered underwater systems in such a way as to simplify the selection and justification of design solutions at the stage of preliminary system design. For design engineers of underwater equipment, the list of classification features of tethered self-propelled and those towed underwater systems has been suggested. The list is based on a system approach and is structured according to material, energy, information and operational (functional) criteria. All of that enables performing the comparative assessment of existing systems upon key indicators and formalizing the processes of their synthesis at early stages of design. To demonstrate the capabilities of the system approach, the generalized algorithm for the organization of design works using the system of classification features of tethered self-propelled and towed underwater systems at the early stages of their design. The algorithm involves the formation and structuring of many classification features of such systems as the initial stage of the process of making effective design decisions in the early stages of design of underwater robotics. It has been revealed that putting in use the classification features system in question, enables deploying minimal project resources to make reference to the relevant databases and decide on already-existing artifact projects and select out of those available in the underwater equipment market key components and parts of underwater systems which would satisfy the requirements of the technical task of implementing the tethered underwater systems. That would significantly reduce the prime cost of design works and enhance the competitiveness of domestic science-based achievements in the markets of marine robotics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.