Many applications in scientific computing process very large sparse matrices on parallel architectures. The presented work in this paper is a part of a project where our general aim is to develop an auto-tuner system for the selection of the best matrix compression format in the context of high-performance computing. The target smart system can automatically select the best compression format for a given sparse matrix, a numerical method processing this matrix, a parallel programming model and a target architecture. Hence, this paper describes the design and implementation of the proposed concept. We consider a case study consisting of a numerical method reduced to the sparse matrix vector product (SpMV), some compression formats, the data parallel as a programming model and, a distributed multi-core platform as a target architecture. This study allows extracting a set of important novel metrics and parameters which are relative to the considered programming model. Our metrics are used as input to a machine-learning algorithm to predict the best matrix compression format. An experimental study targeting a distributed multi-core platform and processing random and real-world matrices shows that our system can improve in average up to 7% the accuracy of the machine learning.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.