Ultrasonography AKA diagnostic sonography is a noninvasive imaging technique that allows the analysis of an organic structure, thanks to the ultrasonic waves. It is a valuable diagnosis method and is also seen as the evidence‐based diagnostic method for thyroid nodules. The diagnosis, however, is visually made by the practitioner. The automatic discrimination of benign and malignant nodules would be very useful to report Thyroid Imaging Reporting. In this paper, we propose a fine‐tuning approach based on deep learning using a Convolutional Neural Network model named resNet‐50. This approach allows improving the effectiveness of the classification of thyroid nodules in ultrasound images. Experiments have been conducted on 814 ultrasound images and the results show that our proposed approach dramatically improves the accuracy of the classification of thyroid nodules and outperforms The VGG‐19 model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.