Heart failure (HF) is a common condition associated with a high rate of hospitalizations and adverse outcomes. HF is characterized by impairments of either the cardiac ventricular filling, ejection of blood capacity or both. Sleep fragmentation (SF) involves a series of short sleep interruptions that lead to fatigue and contribute to cognitive impairments and dementia. Both conditions are known to be associated with increased inflammation and dysbiosis of the gut microbiota. In the present study, mice were distributed into four groups, and subjected for four weeks to either HF, SF, both HF and SF, or left unperturbed as controls. We used 16S metabarcoding to assess fecal microbiome composition before and after the experiments. Evidence for distinct alterations in several bacterial groups and an overall decrease in alpha diversity emerged in HF and SF treatment groups. Combined HF and SF conditions, however, showed no synergism, and observed changes were not always additive, suggesting preliminarily that some of the individual effects of either HF or SF cancel each other out when applied concomitantly.
Colorectal cancer (CRC) is the third most common cancer and the second leading cause of cancer deaths worldwide. Early diagnosis of CRC, which saves lives and enables better outcomes, is generally implemented through a two-step population screening approach based on the use of Fecal Immunochemical Test (FIT) followed by colonoscopy if the test is positive. However, the FIT step has a high false positive rate, and there is a need for new predictive biomarkers to better prioritize cases for colonoscopy. Here we used 16S rRNA metabarcoding from FIT positive samples to uncover microbial taxa, taxon co-occurrence and metabolic features significantly associated with different colonoscopy outcomes, underscoring a predictive potential and revealing changes along the path from healthy tissue to carcinoma. Finally, we used machine learning to develop a two-phase classifier which reduces the current false positive rate while maximizing the inclusion of CRC and clinically relevant samples.
Heart failure (HF) is a common condition associated with a high rate of hospitalizations and adverse outcomes. HF is characterized by impairments of the cardiac ventricular filling and/or ejection of blood capacity. Sleep fragmentation (SF) involves a series of short sleep interruptions that lead to fatigue and contribute to cognitive impairments and dementia. Both conditions are known to be associated with increased inflammation and dysbiosis of the gut microbiota. In the present study, male mice were distributed into four groups, and subjected for four weeks to either HF, SF, both HF and SF, or left unperturbed as controls. We used 16S metabarcoding to assess fecal microbiome composition before and after the experiments. Evidence for distinct alterations in several bacterial groups and an overall decrease in alpha diversity emerged in HF and SF treatment groups. Combined HF and SF conditions, however, showed no synergism, and observed changes were not always additive, suggesting that some of the individual effects of either HF or SF cancel each other out when applied concomitantly.IMPORTANCEThe study demonstrates the potential of the gut microbiome as a source of molecular markers for the diagnosis, prevention, and treatment of both heart failure and sleep fragmentation conditions in isolation. Our results provide the first evidence of an antagonistic effect of the presence of both conditions in the gut microbiome dysbiosis, showing an attenuation of the alterations that are observed when considering them separately.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations鈥揷itations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright 漏 2024 scite LLC. All rights reserved.
Made with 馃挋 for researchers
Part of the Research Solutions Family.