Plant lignans exhibit a wide range of biological activities, which makes them the research objects of potential use as therapeutic agents. They provide diverse naturally-occurring pharmacophores and are available for production by chemical synthesis. A large amount of accumulated data indicates that lignans of different structural groups are apt to demonstrate both anti-inflammatory and antioxidant effects, in many cases, simultaneously. In this review, we summarize the comprehensive knowledge about lignan use as a bioactive agent in disorders associated with oxidative stress and inflammation, pharmacological effects in vitro and in vivo, molecular mechanisms underlying these effects, and chemical synthesis approaches. This article provides an up-to-date overview of the current data in this area, available in PubMed, Scopus, and Web of Science databases, screened from 2000 to 2022.
An efficient and high-yielding strategy to prepare “unsymmetrical”
4-aryl-isoxazol-3,5-dicarboxylic acid derivatives from nitroacetic
esters and aromatic aldehydes has been developed. The strategy is
based on the isolation and usage of the previously missed intermediate
of the Dornow reaction5-hydroxy-6-oxo-4-aryl-6H-1,2-oxazine-3-carboxylates. In addition, the mechanism of the Dornow
reaction was partially revised.
Among acid-sensing ion channels (ASICs), ASIC1a and ASIC3 subunits are the most widespread and prevalent in physiological and pathophysiological conditions. They participate in synaptic plasticity, learning and memory, as well as the perception of inflammatory and neurological pain, making these channels attractive pharmacological targets. Sevanol, a natural lignan isolated from Thymus armeniacus, inhibits the activity of ASIC1a and ASIC3 isoforms, and has a significant analgesic and anti-inflammatory effect. In this work, we described the efficient chemical synthesis scheme of sevanol and its analogues, which allows us to analyze the structure–activity relationships of the different parts of this molecule. We found that the inhibitory activity of sevanol and its analogues on ASIC1a and ASIC3 channels depends on the number and availability of the carboxyl groups of the molecule. At the structural level, we predicted the presence of a sevanol binding site based on the presence of molecular docking in the central vestibule of the ASIC1a channel. We predicted that this site could also be occupied in part by the FRRF-amide peptide, and the competition assay of sevanol with this peptide confirmed this prediction. The intravenous (i.v.), intranasal (i.n.) and, especially, oral (p.o.) administration of synthetic sevanol in animal models produced significant analgesic and anti-inflammatory effects. Both non-invasive methods of sevanol administration (i.n. and p.o.) showed greater efficacy than the invasive (i.v.) method, thus opening new horizons for medicinal uses of sevanol.
Previously, from the plant Thymus armeniacus a new lignan sevanol was isolated, it's structure was elucidated and was shown that it effectively inhibits the acid-sensing channel ASIC3 and also exhibits a pronounced analgesic and anti-inflammatory effect. In this work biological activity of the sevanol analog obtained by chemical synthesis from simple precursors, the stereoisomer of sevanol and a precursor molecule represents a half of sevanol was measured in electrophysiological experiments on human ASIC3 channels expressed in Xenopus laevis oocytes. Measured inhibitory activity of a synthetic analogue coincided with the activity ofthe natural molecule. Stereoisomer showed inhibitory activity drop by about a third part, and the precursor molecule showed much less significant activity. In result the significance of functional groups and a spatial configuration of sevanol in order to biological activity was shown that is important to take into account for the optimal synthesis design as well as for new drugs development on its base.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.