Niemann-Pick type C disease (NPC) is a rare neurodegenerative disorder characterised by lysosomal/late endosomal accumulation of endocytosed unesterified cholesterol and delayed induction of cholesterol homeostatic reactions. The large majority of mutations in the NPC1 gene described thus far have been associated with severe cellular cholesterol trafficking impairment (classic biochemical phenotype, present in about 85% of NPC patients). In our population of 13 unrelated NP-C1 patients, among which 12 were of Portuguese extraction, we observed an unusually large proportion of families presenting mild alterations of intracellular cholesterol transport (variant biochemical phenotype), without strict correlation between the biochemical phenotype and the clinical expression of the disease. Mutational studies were carried out to compare molecular lesions associated with severe and mild cholesterol traffic impairment. Levels of NPC1 protein were studied by Western blot in cultured fibroblasts of four patients with homozygous mutant alleles. Ten novel mutations were identified (Q92R, C177Y, R518W, W942C, R978C, A1035V, 2129delA, 3662delT, IVS23+1 G>A and IVS16-82 G>A). The mutational profile appeared to be correlated with the biochemical phenotype. Splicing mutations, I1061T and A1035V, corresponded to "classic" alleles, while three missense mutations, C177Y, R978C and P1007A, could be defined as "variant" alleles. All "variant" mutations described so far appear to be clustered within the cysteine-rich luminal loop between TM 8 and 9, with the remarkable exception of C177Y. The latter mutant allele, at variance with P1007A, was correlated to a decreased level of NPC1 protein and a severe course of the disease, and disclosed a new location for "variant" mutations, the luminal loop located at the N-terminal end of the protein.
This study summarizes the results of a four-year proj ect in science education conducted in a rural setting with English learners in grades K-6 in the El Centro Elementary School District in southern California. Data were collected to measure student achievement in science, writing, reading, andmathematics for participating students. These data were analyzed relative to the number of years that students participated in kit-and inquiry-based science instruction that included the use of science notebooks. Results indicated that the achievement of English learners increased in relation to the number of years they participated in the project. The longer they were in the program, the higher their scores were in science, writing, reading, andmathematics.
Type 1 Gaucher disease (GD), a non-neuronopathic lysosomal storage disorder, results from the deficient activity of acid beta-glucosidase (GBA). Type 1 disease is panethnic but is more prevalent in individuals of Ashkenazi Jewish (AJ) descent. Of the causative GBA mutations, N370S is particularly frequent in the AJ population, (q approximately .03), whereas the 84GG insertion (q approximately .003) occurs exclusively in the Ashkenazim. To investigate the genetic history of these mutations in the AJ population, short tandem repeat (STR) markers were used to map a 9.3-cM region containing the GBA locus and to genotype 261 AJ N370S chromosomes, 60 European non-Jewish N370S chromosomes, and 62 AJ 84GG chromosomes. A highly conserved haplotype at four markers flanking GBA (PKLR, D1S1595, D1S2721, and D1S2777) was observed on both the AJ chromosomes and the non-Jewish N370S chromosomes, suggesting the occurrence of a founder common to both populations. Of note, the presence of different divergent haplotypes suggested the occurrence of de novo, recurrent N370S mutations. In contrast, a different conserved haplotype at these markers was identified on the 84GG chromosomes, which was unique to the AJ population. On the basis of the linkage disequilibrium (LD) delta values, the non-Jewish European N370S chromosomes had greater haplotype diversity and less LD at the markers flanking the conserved haplotype than did the AJ N370S chromosomes. This finding is consistent with the presence of the N370S mutation in the non-Jewish European population prior to the founding of the AJ population. Coalescence analyses for the N370S and 84GG mutations estimated similar coalescence times, of 48 and 55.5 generations ago, respectively. The results of these studies are consistent with a significant bottleneck occurring in the AJ population during the first millennium, when the population became established in Europe.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.