Pathogenic germline TP53 variants predispose to a wide range of early onset cancers, often recognized as the Li‐Fraumeni syndrome (LFS). They are also identified in 1% of families with hereditary breast cancer (HrBC) that do not fulfill the criteria for LFS. In this study, we present a total of 24 different TP53 variants identified in 31 Swedish families with LFS or HrBC. Ten of these variants, nine exonic and one splice, have previously not been described as germline pathogenic variants. The nine exonic variants were functionally characterized and demonstrated partial transactivation activity compared to wild‐type p53. Some show nuclear localization similar to wild‐type p53 while others possess cytoplasmic or perinuclear localization. The four frameshift variants (W91Gfs*32, L111 Wfs*12, S227 Lfs*20 and S240Kfs*25) had negligible, while F134 L and T231del had low level of p53 activity. The L111 Wfs*12 and T231del variants are also deficient for induction of apoptosis. The missense variant R110C retain p53 effects and the nonsense E349* shows at least partial transcription factor activity but has reduced ability to trigger apoptosis. This is the first functional characterization of novel germline TP53 pathogenic or likely pathogenic variants in the Swedish cohort as an attempt to understand its association with LFS and HrBC, respectively.
Rare germline pathogenic TP53 missense variants often predispose to a wide spectrum of tumors characterized by Li-Fraumeni syndrome (LFS) but a subset of variants is also seen in families with exclusively hereditary breast cancer (HBC) outcomes. We have developed a logistic regression model with the aim of predicting LFS and HBC outcomes, based on the predicted effects of individual TP53 variants on aspects of protein conformation. A total of 48 missense variants either unique for LFS (n = 24) or exclusively reported in HBC (n = 24) were included. LFS-variants were over-represented in residues tending to be buried in the core of the tertiary structure of TP53 (p = 0.0014). The favored logistic regression model describes disease outcome in terms of explanatory variables related to the surface or buried status of residues as well as their propensity to contribute to protein compactness or protein-protein interactions. Reduced, internally validated models discriminated well between LFS and HBC (C-statistic = 0.78−0.84; equivalent to the area under the ROC (receiver operating characteristic) curve), had a low risk for over-fitting and were well calibrated in relation to the known outcome risk. In conclusion, this study presents a phenotypic prediction model of LFS and HBC risk for germline TP53 missense variants, in an attempt to provide a complementary tool for future decision making and clinical handling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.