Bacterial and viral infections are often clinically indistinguishable, leading to inappropriate patient management and antibiotic misuse. Bacterial-induced host proteins such as procalcitonin, C-reactive protein (CRP), and Interleukin-6, are routinely used to support diagnosis of infection. However, their performance is negatively affected by inter-patient variability, including time from symptom onset, clinical syndrome, and pathogens. Our aim was to identify novel viral-induced host proteins that can complement bacterial-induced proteins to increase diagnostic accuracy. Initially, we conducted a bioinformatic screen to identify putative circulating host immune response proteins. The resulting 600 candidates were then quantitatively screened for diagnostic potential using blood samples from 1002 prospectively recruited patients with suspected acute infectious disease and controls with no apparent infection. For each patient, three independent physicians assigned a diagnosis based on comprehensive clinical and laboratory investigation including PCR for 21 pathogens yielding 319 bacterial, 334 viral, 112 control and 98 indeterminate diagnoses; 139 patients were excluded based on predetermined criteria. The best performing host-protein was TNF-related apoptosis-inducing ligand (TRAIL) (area under the curve [AUC] of 0.89; 95% confidence interval [CI], 0.86 to 0.91), which was consistently up-regulated in viral infected patients. We further developed a multi-protein signature using logistic-regression on half of the patients and validated it on the remaining half. The signature with the highest precision included both viral- and bacterial-induced proteins: TRAIL, Interferon gamma-induced protein-10, and CRP (AUC of 0.94; 95% CI, 0.92 to 0.96). The signature was superior to any of the individual proteins (P<0.001), as well as routinely used clinical parameters and their combinations (P<0.001). It remained robust across different physiological systems, times from symptom onset, and pathogens (AUCs 0.87-1.0). The accurate differential diagnosis provided by this novel combination of viral- and bacterial-induced proteins has the potential to improve management of patients with acute infections and reduce antibiotic misuse.
Double-blinded evaluation confirmed high assay performance in febrile children. Assay was significantly more accurate than CRP, procalcitonin, and routine laboratory parameters. Additional studies are warranted to support its potential to improve antimicrobial treatment decisions.
Respiratory tract infections (RTI) are more commonly caused by viral pathogens in children than in adults. Surprisingly, little is known about antibiotic use in children as compared to adults with RTI. This prospective study aimed to determine antibiotic misuse in children and adults with RTI, using an expert panel reference standard, in order to prioritise the target age population for antibiotic stewardship interventions. We recruited children and adults who presented at the emergency department or were hospitalised with clinical presentation of RTI in The Netherlands and Israel. A panel of three experienced physicians adjudicated a reference standard diagnosis (i.e. bacterial or viral infection) for all the patients using all available clinical and laboratory information, including a 28-day follow-up assessment. The cohort included 284 children and 232 adults with RTI (median age, 1.3 years and 64.5 years, respectively). The proportion of viral infections was larger in children than in adults (209(74%) versus 89(38%), p < 0.001). In case of viral RTI, antibiotics were prescribed (i.e. overuse) less frequently in children than in adults (77/209 (37%) versus 74/89 (83%), p < 0.001). One (1%) child and three (2%) adults with bacterial infection were not treated with antibiotics (i.e. underuse); all were mild cases. This international, prospective study confirms major antibiotic overuse in patients with RTI. Viral infection is more common in children, but antibiotic overuse is more frequent in adults with viral RTI. Together, these findings support the need for effective interventions to decrease antibiotic overuse in RTI patients of all ages. Electronic supplementary material The online version of this article (10.1007/s10096-018-03454-2) contains supplementary material, which is available to authorized users.
Bacterial and viral infections often present with similar symptoms. Etiologic misdiagnosis can alter the trajectory of patient care, including antibiotic overuse. A host-protein signature comprising tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), interferon gamma-induced protein-10 (IP-10), and C-reactive protein (CRP) was validated recently for differentiating bacterial from viral disease. However, a focused head-to-head comparison of its diagnostic performance against other biomarker candidates for this indication was lacking in patients with respiratory infection and fever without source. We compared the signature to other biomarkers and prediction rules using specimens collected prospectively at two secondary medical centers from children and adults. Inclusion criteria included fever > 37.5 °C, symptom duration ≤ 12 days, and presentation with respiratory infection or fever without source. Comparator method was based on expert panel adjudication. Signature and biomarker cutoffs and prediction rules were predefined. Of 493 potentially eligible patients, 314 were assigned unanimous expert panel diagnosis and also had sufficient specimen volume. The resulting cohort comprised 175 (56%) viral and 139 (44%) bacterial infections. Signature sensitivity 93.5% (95% CI 89.1–97.9%), specificity 94.3% (95% CI 90.7–98.0%), or both were significantly higher (all p values < 0.01) than for CRP, procalcitonin, interleukin-6, human neutrophil lipocalin, white blood cell count, absolute neutrophil count, and prediction rules. Signature identified as viral 50/57 viral patients prescribed antibiotics, suggesting potential to reduce antibiotic overuse by 88%. The host-protein signature demonstrated superior diagnostic performance in differentiating viral from bacterial respiratory infections and fever without source. Future utility studies are warranted to validate potential to reduce antibiotic overuse.Electronic supplementary materialThe online version of this article (10.1007/s10096-018-3261-3) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.