We investigated the effect of co-presenting training items during supervised classification learning of novel relational categories. Strong evidence exists that comparison induces a structural alignment process that renders common relational structure more salient. We hypothesized that comparisons between exemplars would facilitate learning and transfer of categories that cohere around a common relational property. The effect of comparison was investigated using learning trials that elicited a separate classification response for each item in presentation pairs that could be drawn from the same or different categories. This methodology ensures consideration of both items and invites comparison through an implicit same-different judgment inherent in making the two responses. In a test phase measuring learning and transfer, the comparison group significantly outperformed a control group receiving an equivalent training session of single-item classification learning. Comparison-based learners also outperformed the control group on a test of far transfer, that is, the ability to accurately classify items from a novel domain that was relationally alike, but surface-dissimilar, to the training materials. Theoretical and applied implications of this comparison advantage are discussed.
The influence of phonological similarity on bilingual language processing was examined within and across languages in three experiments. Phonological similarity was manipulated within a language by varying neighborhood density, and across languages by varying extent of cross-linguistic overlap between native and non-native languages. In Experiment 1, speed and accuracy of bilinguals' picture naming were susceptible to phonological neighborhood density in both the first and the second language. In Experiment 2, eye-movement patterns indicated that the time-course of language activation varied across phonological neighborhood densities and across native/non-native language status. In Experiment 3, speed and accuracy of bilingual performance in an auditory lexical decision task were influenced by degree of cross-linguistic phonological overlap. Together, the three experiments confirm that bilinguals are sensitive to phonological similarity within and across languages and suggest that this sensitivity is asymmetrical across native and non-native languages and varies along the timecourse of word processing.
Better understanding of cerebral blood flow (CBF) perfusion in stroke recovery can help inform decisions about optimal timing and targets of restorative treatments. In this study, we examined the relationship between cerebral perfusion and recovery from stroke‐induced reading deficits. Left stroke patients were tested with a noninvasive CBF measure (arterial spin labeling) <5 weeks post‐stroke, and a subset had follow up testing >3 months post‐stroke. We measured blood flow perfusion within the left and right sides of the brain, in areas surrounding the lesion, and areas belonging to the reading network. Two hypotheses were tested. The first was that recovery of reading function depends on increased perfusion around the stroke lesion. This hypothesis was not supported by our findings. The second hypothesis was that increased perfusion of intact areas within the reading circuit is tightly coupled with recovery. Our findings are consistent with this hypothesis. Specifically, higher perfusion in the left reading network measured during the subacute stroke period predicted better reading ability and phonology competence in the chronic period. In contrast, higher perfusion of the right homologous regions was associated with decreased reading accuracy and phonology competence in the subacute and chronic periods. These findings suggest that recovery of reading and language competence may rely on improved blood flow in the reading network of the language‐dominant hemisphere.
The distinction between letter strings that form words and those that look and sound plausible but are not meaningful is a basic one. Decades of functional neuroimaging experiments have used this distinction to isolate the neural basis of lexical (word-level) semantics, associated with areas such as the middle temporal, angular, and posterior cingulate gyri that overlap the default-mode network. In two functional magnetic resonance imaging (fMRI) experiments, a different set of findings emerged when word stimuli were used that were less familiar (measured by word frequency) than those typically used. Instead of activating default-mode network areas often associated with semantic processing, words activated task-positive areas such as the inferior prefrontal cortex and supplementary motor area, along with multi-functional ventral occipito-temporal cortices related to reading, while nonwords activated default-mode areas previously associated with semantics. Effective connectivity analyses of fMRI data on less familiar words showed activation driven by task-positive and multi-functional reading-related areas, while highly familiar words showed bottom-up activation flow from occipito-temporal cortex. These findings suggest functional neuroimaging correlates of semantic processing are less stable than previously assumed, with factors such as word frequency influencing the balance between task-positive, reading-related, and default-mode networks. More generally, this suggests results of contrasts typically interpreted in terms of semantic content may be more influenced by factors related to task difficulty than is widely appreciated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.