Organic optoelectronics calls for materials combining bright luminescence and efficient charge transport. The former is readily achieved in isolated molecules, while the latter requires strong molecular aggregation, which usually quenches luminescence. This hurdle is generally resolved by doping the host material with highly luminescent molecules collecting the excitation energy from the host. Here, a novel concept of molecular self-doping is introduced in which a higher luminescent dopant emerges as a minute-amount byproduct during the host material synthesis. As a one-stage process, self-doping is more advantageous than widely used external doping. The concept is proved on thiophene-phenylene cooligomers (TPCO) consisting of four (host) and six (dopant) conjugated rings. It is shown that <1% self-doping doubles the photoluminescence in the TPCO single crystals, while not affecting much their charge transport properties. The Monte-Carlo modeling of photoluminescence dynamics reveals that host-dopant energy transfer is controlled by both excitonic transport in the host and host-dopant Förster resonant energy transfer. The self-doping concept is further broadened to a variety of conjugated oligomers synthesized via Suzuki, Kumada, and Stille crosscoupling reactions. It is concluded that self-doping combined with improved excitonic transport and host-dopant energy transfer is a promising route to highly luminescent semiconducting organic single crystals for optoelectronics.
The donor-acceptor ground-state charge-transfer complex (CTC) formed in solution between a conjugated polymer, poly[methoxy-5-(2'-ethylhexyloxy)-1,4-phenylene-vinylene] (MEH-PPV), and a low-molecular-weight organic acceptor, 2,4,7-trinitrofluorenone (TNF), is studied by optical absorption and Raman spectroscopy. The CTC absorption as a function of TNF content shows a threshold increase that is in conflict with the model commonly used for optical characterization of low-molecular-weight CTCs. The shift of MEH-PPV characteristic Raman band at 1585 cm(-1) also exhibits a threshold dependence upon TNF addition. We assign the threshold in both the absorption and Raman data to the CTC concentration. To describe the threshold in the terms of the common model, we extend it by introducing an association function instead of a constant. The association function of acceptor concentration has been calculated to be K(a) approximately 1.5-3 M(-1) below the threshold, to increase steeply up to K(a) approximately 6-7.5 M(-1) just after the threshold, and then to grow gradually up to K(a) approximately 40 M(-1). The CTC molar absorption coefficient has been found to be epsilon(CTC) = (12.7 +/- 0.6) x 10(3) M(-1) cm(-1) at 635 nm. We explain the threshold as a result of the positive feedback: the CTC formation induces planarizaton of conjugated polymer segments that in turn facilitates further CTC formation.
Efficient operation of organic electronic devices requires high charge‐carrier mobilities in their active layers, but only several organic semiconductors show confirmed charge‐carrier mobilities exceeding that of amorphous silicon (≈1 cm2 V−1 s−1). Charge transport in high‐mobility organic semiconductor crystals is considerably hindered by non‐local electron‐phonon interaction (NLEPI) transforming dynamic disorder induced by low‐frequency (LF) vibrations into fluctuations of charge transfer integrals. In this work, using two crystals of naphthalene diimide derivatives as an example, LF vibrational modes that strongly modulate the charge transfer integrals are computationally revealed. The importance of the discussed LF modes for limiting the charge‐carrier mobility is justified by analyzing the effect of the dynamic disorder on the charge‐carrier dynamics, estimating the charge‐carrier mobility in the two crystals, and observing quite a good agreement of the latter with the experimental values. Finally, it is shown that the contribution of various modes to the NLEPI correlates with their experimental Raman intensities. As a result, it is suggested that LF Raman spectroscopy can be used for experimental study of NLEPI, which can help with screening organic semiconductors showing high charge‐carrier mobility and promote rational design of such materials.
Synthesis of multicomponent solid forms is an important method of modifying and fine-tuning the most critical physicochemical properties of drug compounds. The design of new multicomponent pharmaceutical materials requires reliable information about the supramolecular arrangement of molecules and detailed description of the intermolecular interactions in the crystal structure. It implies the use of a combination of different experimental and theoretical investigation methods. Organic salts present new challenges for those who develop theoretical approaches describing the structure, spectral properties, and lattice energy Elatt. These crystals consist of closed-shell organic ions interacting through relatively strong hydrogen bonds, which leads to Elatt > 200 kJ/mol. Some technical problems that a user of periodic (solid-state) density functional theory (DFT) programs encounters when calculating the properties of these crystals still remain unsolved, for example, the influence of cell parameter optimization on the Elatt value, wave numbers, relative intensity of Raman-active vibrations in the low-frequency region, etc. In this work, various properties of a new two-component carbendazim maleate crystal were experimentally investigated, and the applicability of different DFT functionals and empirical Grimme corrections to the description of the obtained structural and spectroscopic properties was tested. Based on this, practical recommendations were developed for further theoretical studies of multicomponent organic pharmaceutical crystals.
In this work, three new pharmaceutical salts of fenbendazole (FNB), a benzimidazole-based anthelmintic drug, with sulfonic acids have been obtained and thoroughly investigated by different analytical techniques, including thermal methods, infrared/Raman spectroscopy, and theoretical methods (periodic DFT computations and Bader analyses of the crystalline electronic density). Single-crystal and high-resolution synchrotron powder X-ray diffraction data for the first time made it possible to determine the crystal structures of mesylate and tosylate salts of the drug, which were further validated by dispersion-corrected density functional theory calculations. All the solid forms were stabilized by a robust R2 2(8) supramolecular motif formed by relatively strong N–H···O hydrogen bonds. In the monohydrate of FNB tosylate, a considerable gain in the stabilization energy was due to the intermolecular interactions generated by the water molecules. A careful examination of the solubility–pH profile of the FNB salts revealed that, despite being thermodynamically unstable within the physiologically relevant pH range, the new solid forms demonstrated superior dissolution performance in terms of both the apparent solubility and the release rate in comparison to the parent drug. Since FNB has also been reported to possess anticancer activity, improving the drug’s poor physicochemical properties through salt formation with the selected sulfonic acids is expected to promote further investigations toward repurposing of this potent compound.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.