The hypersensitive response (HR) is induced by certain plant pathogens and involves programmed cell death (PCD) to restrict the spread of pathogens from the infection site [1]. Concurrent with the induction of cell death, the host activates a defense response [2]. The cell death associated with the HR in several plant-pathogen systems has morphological similarities to animal apoptosis [3,4], which suggests that cell death mechanisms in plants and animals may share common components that lead to similar cellular events. Caspases are conserved cysteine proteases that regulate animal PCD [5]; caspase activity or an involvement of caspases in cell death has yet to be reported in plants. In this work, we investigated the participation of caspases in HR cell death. Caspase-specific peptide inhibitors, Ac-YVAD-CMK [6] and Ac-DEVD-CHO [7], could abolish bacteria-induced plant PCD but did not significantly affect the induction of other aspects of HR, such as the expression of defense genes. This result confirmed our previous model that cell death can be uncoupled from defense gene activation during HR [8]. Caspase-like proteolytic activity was detected in tobacco tissues that were developing HR following infection with tobacco mosaic virus (TMV). Our results provide evidence for the presence of caspase-like plant protease(s) that participate in HR cell death.
Many plant pathogens cause disease symptoms that manifest over days as regions of localized cell death. Localized cell death (the hypersensitive response; HR) also occurs in disease-resistant plants, but this response appears within hours of attempted infection and may restrict further pathogen growth. We identified a MAP kinase kinase kinase gene (MAPKKKa) that is required for the HR and resistance against Pseudomonas syringae. Significantly, we found that MAPKKKa also regulates cell death in susceptible leaves undergoing P. syringae infection. Overexpression of MAPKKKa in leaves activated MAPKs and caused pathogen-independent cell death. By overexpressing MAPKKKa in leaves and suppressing expression of various MAPKK and MAPK genes by virus-induced gene silencing, we identified two distinct MAPK cascades that act downstream of MAPKKKa. These results demonstrate that signal transduction pathways associated with both plant immunity and disease susceptibility share a common molecular switch.
In animals, aconitase is a bifunctional protein. When an iron-sulfur cluster is present in its catalytic center, aconitase displays enzymatic activity; when this cluster is lost, it switches to an RNA-binding protein that regulates the translatability or stability of certain transcripts. To investigate the role of aconitase in plants, we assessed its ability to bind mRNA. Recombinant aconitase failed to bind an iron responsive element (IRE) from the human ferritin gene. However, it bound the 5' UTR of the Arabidopsis chloroplastic CuZn superoxide dismutase 2 (CSD2) mRNA, and this binding was specific. Arabidopsis aconitase knockout (KO) plants were found to have significantly less chlorosis after treatment with the superoxide-generating compound, paraquat. This phenotype correlated with delayed induction of the antioxidant gene GST1, suggesting that these KO lines are more tolerant to oxidative stress. Increased levels of CSD2 mRNAs were observed in the KO lines, although the level of CSD2 protein was not affected. Virus-induced gene silencing (VIGS) of aconitase in Nicotiana benthamiana caused a 90% reduction in aconitase activity, stunting, spontaneous necrotic lesions, and increased resistance to paraquat. The silenced plants also had less cell death after transient co-expression of the AvrPto and Pto proteins or the pro-apoptotic protein Bax. Following inoculation with Pseudomonas syringae pv. tabaci carrying avrPto, aconitase-silenced N. benthamiana plants expressing the Pto transgene displayed a delayed hypersensitive response (HR) and supported higher levels of bacterial growth. Disease-associated cell death in N. benthamiana inoculated with P. s. pv. tabaci was also reduced. Taken together, these results suggest that aconitase plays a role in mediating oxidative stress and regulating cell death.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.