SignificanceThe coeveolution of flowers and pollinators is well known, but how generalist pollinators identify suitable flowers across environments and flower species is not well understood. Hoverflies, which are found across the globe, are one of the most important alternative pollinators after bees and bumblebees. Here we measured, predicted, and finally recreated multimodal cues from individual flowers visited by hoverflies in three different environments (hemiboreal, alpine, and tropical). We found that although “flower signatures” were unique for each environment, some cues were ubiquitously attractive, despite not resembling cue combinations from real flowers. Our results provide unique insights into how a cosmopolitan pollinator identifies flower objects across environments, which has important implications for our understanding of pollination as a global ecological service.
Animal sensory systems are optimally adapted to those features typically encountered in natural surrounds, thus allowing neurons with limited bandwidth to encode challengingly large input ranges. Natural scenes are not random, and peripheral visual systems in vertebrates and insects have evolved to respond efficiently to their typical spatial statistics. The mammalian visual cortex is also tuned to natural spatial statistics, but less is known about coding in higher order neurons in insects. To redress this we here record intracellularly from a higher order visual neuron in the hoverfly. We show that the cSIFE neuron, which is inhibited by stationary images, is maximally inhibited when the slope constant of the amplitude spectrum is close to the mean in natural scenes. The behavioural optomotor response is also strongest to images with naturalistic image statistics. Our results thus reveal a close coupling between the inherent statistics of natural scenes and higher order visual processing in insects.
Natural scenes may appear random, but are not only constrained in space and time, but also show strong spatial and temporal correlations. Spatial constraints and correlations can be described by quantifying image statistics, which include intuitive measures such as contrast, color and luminance, but also parameters that need some type of transformation of the image. In this review we will discuss some common tools used to quantify spatial and temporal parameters of naturalistic visual input, and how these tools have been used to inform us about visual processing in insects. In particular, we will review findings that would not have been possible using conventional, experimenter defined stimuli.
Acute sleep loss influences visual processes in humans, such as recognizing facial emotions. However, to the best of our knowledge, no study till date has examined whether acute sleep loss alters visual comfort when looking at images. One image statistic that can be used to investigate the level of visual comfort experienced under visual encoding is the slope of the amplitude spectrum, also referred to as the slope constant. The slope constant describes the spatial distribution of pixel intensities and deviations from the natural slope constant can induce visual discomfort. In the present counterbalanced crossover design study, 11 young men with normal or corrected‐to‐normal vision participated in two experimental conditions: one night of sleep loss and one night of sleep. In the morning after each intervention, subjects performed a computerized psychophysics task. Specifically, they were required to adjust the slope constant of images depicting natural landscapes and close‐ups with a randomly chosen initial slope constant until they perceived each image as most natural looking. Subjects also rated the pleasantness of each selected image. Our analysis showed that following sleep loss, higher slope constants were perceived as most natural looking when viewing images of natural landscapes. Images with a higher slope constant are generally perceived as blurrier. The selected images were also rated as less pleasant after sleep loss. No such differences between the experimental conditions were noted for images of close‐ups. The results suggest that sleep loss induces signs of visual discomfort in young men. Possible implications of these findings are discussed.
Natural scenes are not as random as they might appear, but are constrained in both space and time. The 2-dimensional spatial constraints can be described by quantifying the image statistics of photographs. Human observers perceive images with naturalistic image statistics as more pleasant to view, and both fly and vertebrate peripheral and higher order visual neurons are tuned to naturalistic image statistics. However, for a given animal, what is natural differs depending on the behavior, and even if we have a broad understanding of image statistics, we know less about the scenes relevant for particular behaviors. To mitigate this, we here investigate the image statistics surrounding Episyrphus balteatus hoverflies, where the males hover in sun shafts created by surrounding trees, producing a rich and dense background texture and also intricate shadow patterns on the ground. We quantified the image statistics of photographs of the ground and the surrounding panorama, as the ventral and lateral visual field is particularly important for visual flight control, and found differences in spatial statistics in photos where the hoverflies were hovering compared to where they were flying. Our results can, in the future, be used to create more naturalistic stimuli for experimenter-controlled experiments in the laboratory.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.