The present work considers the low-Reynolds-number wake flow behind a squareback Ahmed body, in close proximity to a ground. At low Reynolds numbers such wakes are known to undergo a series of bifurcations to a state that breaks reflectional symmetry. The symmetry breaking of the wake also persists at turbulent high Reynolds numbers, where it manifests as bi-modal behaviour with random switching between the asymmetric states. Thus far, it has only been possible to study the low-Reynolds-number sequence of bifurcations experimentally and mathematically. The present work presents the first numerical simulations capturing the sequence of symmetry breaking bifurcations that occur. A study of how the wake topology changes throughout suggests that interaction between the closer top/bottom pair of parallel shear layers can only dominate once there is sufficient underbody flow. When this occurs, the two main vortex structures in the wake switch from being horizontally to vertically aligned. A linear feedback control strategy, designed to attenuate base pressure force fluctuations, is then implemented. This causes an accompanying reduction in drag and re-symmetrisation of the wake. Analysis using the dynamic mode decomposition confirms that the wake shedding mode is re-symmetrised. This work motivates future attempts to capture wake symmetry breaking and bi-modality in numerical simulations, and application of a promising feedback control strategy at higher, turbulent Reynolds numbers.
The bi-modal behaviour of the turbulent flow past three-dimensional blunt bluff bodies is simulated using wall-resolved large eddy simulations. Bi-modality (also called bi-stability) is a phenomenon that occurs in the wakes of three-dimensional bluff bodies. It manifests as a random displacement of the wake between preferred off-centre locations. Two bluff bodies are considered in this work: a conventional square-back Ahmed body representative of road cars, and a simplified lorry, which is taller than it is wide, with its aspect ratio corresponding to a 15 % European lorry scale model. To our knowledge, this is the first time that the asymmetric bi-modal switching behaviour of the wake, observed experimentally, has been captured in simulations. The resulting unsteady flow fields are then analysed, revealing instantaneous topological changes in the wake experiencing bi-modal switching. The best-resolved case, the simplified lorry geometry, is then studied in greater detail using modal decomposition to gain insights into the energy content and the dominant frequencies of the wake flow structures associated with the asymmetric states. High-frequency snapshots of the switching sequence allow us to propose that large hairpin vortices are responsible for the triggering of the switching.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.