The recent interest in the surveillance of public, military, and commercial scenarios is increasing the need to develop and deploy intelligent and/or automated distributed visual surveillance systems. Many applications based on distributed resources use the socalled software agent technology. In this paper, a multi-agent framework is applied to coordinate videocamera-based surveillance. The ability to coordinate agents improves the global image and task distribution efficiency. In our proposal, a software agent is embedded in each camera and controls the capture parameters. Then coordination is based on the exchange of high-level messages among agents. Agents use an internal symbolic model to interpret the current situation from the messages from all other agents to improve global coordination.
In this paper, we present a modified hidden Markov model with emission probabilities modelled by kernel density estimation and its use for activity recognition in videos. In the proposed approach, kernel density estimation of the emission probabilities is operated simultaneously with that of all the other model parameters by an adapted Baum-Welch algorithm. This allows us to retain maximum-likelihood estimation while overcoming the known limitations of mixture of Gaussians in modelling certain probability distributions. Experiments on activity recognition have been performed on groundtruthed data from the CAVIAR video surveillance database and reported in the paper. The error on the training and validation sets with kernel density estimation remains around 14-16% while for the conventional Gaussian mixture approach varies between 15 and 24%, strongly depending on the initial values chosen for the parameters. Overall, kernel density estimation proves capable of providing more flexible modelling of the emission probabilities and, unlike Gaussian mixtures, does not suffer from being highly parametric and of difficult initialisation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.