Carbon capture and sequestration (CCS) is a technology that provides a near-term solution to reduce anthropogenic CO2 emissions to the atmosphere and reduce our impact on the climate system. Assessments of carbon sequestration resources that have been made for North America using existing methodologies likely underestimate uncertainty and variability in the reservoir parameters. This paper describes a geostatistical model developed to estimate the CO2 storage resource in sedimentary formations. The proposed stochastic model accounts for the spatial distribution of reservoir properties and is implemented in a case study of the Oriskany Formation of the Appalachian sedimentary basin. Results indicate that the CO2 storage resource for the Pennsylvania part of the Oriskany Formation has substantial spatial variation due to heterogeneity of formation properties and basin geology leading to significant uncertainty in the storage assessment. The Oriskany Formation sequestration resource estimate in Pennsylvania calculated with the effective efficiency factor, E=5%, ranges from 0.15 to 1.01 gigatonnes (Gt) with a mean value of 0.52 Gt of CO2 (E=5%). The methodology is generalizable to other sedimentary formations in which site-specific trend analyses and statistical models are developed to estimate the CO2 sequestration storage capacity and its uncertainty. More precise CO2 storage resource estimates will provide better recommendations for government and industry leaders and inform their decisions on which greenhouse gas mitigation measures are best fit for their regions.
Today, an increased emphasis on the distribution, potential volume, and cost to develop CO 2 geologic sequestration resources exists. In the presence of climate change, the need to make accurate and clearly understandable assessments of carbon sequestration potential, which can be used by the government and industry to plan for technology deployment, has never been greater. We compare three CO 2 storage assessment methodologies: the approach applied by the U.S. Department of Energy in its Carbon Atlas III, the modified U.S. Geological Survey methodology, and the CO 2 Geological Storage Solutions methodology. All three methodologies address storage resources in porous geologic media in sedimentary basins, namely oil and gas reservoirs and saline formations. Based on our analyses, these methodologies are similar in terms of computational formulation. We find that each of the proposed methodologies is science and engineering based. As such, they are important in identifying the geographical distribution of CO 2 storage resource and regional carbon sequestration potential at the national and basin-scale levels for use in energy-related government policy and business decisions. Policy makers need these high-level estimates to evaluate the prospective function that carbon capture and sequestration technologies can play in reducing CO 2 emissions over the long term. The value of these high-level assessments of CO 2 storage resource is to help inform decision makers in governments and industry as to whether carbon capture and sequestration is a climate mitigation option worth pursuing in particular regions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.