Although it is generally accepted that cellular differentiation requires changes to transcriptional networks, dynamic regulation of promoters and enhancers at specific sets of genes has not been previously studied en masse. Exploiting the fact that active promoters and enhancers are transcribed, we simultaneously measured their activity in 19 human and 14 mouse time courses covering a wide range of cell types and biological stimuli. Enhancer RNAs, then messenger RNAs encoding transcription factors, dominated the earliest responses. Binding sites for key lineage transcription factors were simultaneously overrepresented in enhancers and promoters active in each cellular system. Our data support a highly generalizable model in which enhancer transcription is the earliest event in successive waves of transcriptional change during cellular differentiation or activation.
Currently there is a surge of interest in exploiting toxicogenomics to screen the toxicity of chemicals, enabling rapid and accurate categorisation into classes of defined mode-of-action (MOA), and prioritising chemicals for further testing. Direct infusion FT-ICR mass spectrometry-based metabolomics can provide a sensitive and unbiased analysis of metabolites in only 15 mins and therefore has considerable potential for chemical screening. The water flea, Daphnia magna, is an OECD test species and is utilised internationally for toxicity testing. However, no metabolomics studies of this species have been reported.Here we optimised and evaluated the effectiveness of FT-ICR mass spectrometry metabolomics for toxicity testing in D. magna. We confirmed that high-quality mass spectra can be recorded from as few as 30 neonates (\24 h old; 224 lg dry mass) or a single adult daphnid (301 lg dry mass). An OECD 24 h acute toxicity test was conducted with neonates at copper concentrations of 0, 5, 10, 25, 50 lg l -1 . A total of 5447 unique peaks were detected reproducibly, of which 4768 were assigned at least one empirical formula and 1017 were putatively identified based upon accurate mass measurements. Significant copper-induced changes to the daphnid metabolome, consistent with the documented MOA of copper, were detected thereby validating the approach. In addition, Nacetylspermidine was putatively identified as a novel biomarker of copper toxicity. Collectively, our results highlight the excellent sensitivity, reproducibility and mass accuracy of FT-ICR mass spectrometry, and provide strong evidence for its applicability to high-throughput screening of chemical toxicity in D. magna.
The acquisition and analysis of datasets including multi-level omics and physiology from non-model species, sampled from field populations, is a formidable challenge, which so far has prevented the application of systems biology approaches. If successful, these could contribute enormously to improving our understanding of how populations of living organisms adapt to environmental stressors relating to, for example, pollution and climate. Here we describe the first application of a network inference approach integrating transcriptional, metabolic and phenotypic information representative of wild populations of the European flounder fish, sampled at seven estuarine locations in northern Europe with different degrees and profiles of chemical contaminants. We identified network modules, whose activity was predictive of environmental exposure and represented a link between molecular and morphometric indices. These sub-networks represented both known and candidate novel adverse outcome pathways representative of several aspects of human liver pathophysiology such as liver hyperplasia, fibrosis, and hepatocellular carcinoma. At the molecular level these pathways were linked to TNF alpha, TGF beta, PDGF, AGT and VEGF signalling. More generally, this pioneering study has important implications as it can be applied to model molecular mechanisms of compensatory adaptation to a wide range of scenarios in wild populations.
Ovarian germ cell tumors (OGCTs) and sex cord stromal tumors (SCSTs) are rare gynecologic tumors that are derived from germ and stromal cells, respectively. Unlike their epithelial counterparts, molecular pathogenesis of these tumor types is still poorly understood. Here, we characterized microRNA (miRNA) expression profiles of 9 OGCTs (2 malignant and 7 benign) and 3 SCSTs using small RNA sequencing. We observed significant miRNA expression variations among the three tumor groups. To further demonstrate the biological relevance of our findings, we selected 12 miRNAs for validation in an extended cohort of 16 OGCTs (9 benign and 7 malignant) and 7 SCSTs by reverse transcription-quantitative polymerase chain reaction. Higher expression of miR-373-3p, miR-372-3p and miR-302c-3p and lower expression of miR-199a-5p, miR-214-5p and miR-202-3p were reproducibly observed in malignant OGCTs as compared to benign OGCTs or SCSTs. Comparing with benign OGCTs, miR-202c-3p and miR-513c-5p were more abundant in SCSTs. Additionally, we examined Beclin 1 (BECN1), a target of miR-199a-5p, in the clinical samples using western blot analysis. Our results show that BECN1 expression was higher in malignant OGCTs than benign OGCTs, which is concordant with their lower miR-199a-5p expression. This study suggests that these miRNAs may have potential value as tumor markers and implications for further understanding the molecular basis of these tumor types.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.