CD19-directed treatment in B-cell precursor acute lymphoblastic leukaemia (BCP-ALL) frequently leads to the downmodulation of targeted antigens. As multicolour flow cytometry (MFC) application for minimal/measurable residual disease (MRD) assessment in BCP-ALL is based on B-cell compartment study, CD19 loss could hamper MFC-MRD monitoring after blinatumomab or chimeric antigen receptor T-cell (CAR-T) therapy. The use of other antigens (CD22, CD10, CD79a, etc.) as B-lineage gating markers allows the identification of CD19-negative leukaemia, but it could also lead to misidentification of normal very-early CD19-negative BCPs as tumour blasts. In the current study, we summarized the results of the investigation of CD19-negative normal BCPs in 106 children with BCP-ALL who underwent CD19 targeting (blinatumomab, n = 64; CAR-T, n = 25; or both, n = 17). It was found that normal CD19-negative BCPs could be found in bone marrow after CD19-directed treatment more frequently than in healthy donors and children with BCP-ALL during chemotherapy or after stem cell transplantation. Analysis of the antigen expression profile revealed that normal CD19-negative BCPs could be mixed up with residual leukaemic blasts, even in bioinformatic analyses of MFC data. The results of our study should help to investigate MFC-MRD more accurately in patients who have undergone CD19-targeted therapy, even in cases with normal CD19-negative BCP expansion.
We report incidence and deep molecular characteristics of lineage switch in 182 pediatric patients affected by B-cell precursor acute lymphoblastic leukemia (BCP-ALL), who were treated with blinatumomab. We documented six cases of lineage switch that occurred after or during blinatumomab exposure. Therefore, lineage conversion was found in 17.4% of all resistance cases (4/27) and 3.2% of relapses (2/63). Half of patients switched completely from BCP-ALL to CD19-negative acute myeloid leukemia, others retained CD19-positive B-blasts and acquired an additional CD19-negative blast population: myeloid or unclassifiable. Five patients had KMT2A gene rearrangements; one had TCF3::ZNF384 translocation. The presented cases showed consistency of gene rearrangements and fusion transcripts across initially diagnosed leukemia and lineage switch. In two of six patients, the clonal architecture assessed by IG/TR gene rearrangements was stable, while in others, loss of clones or gain of new clones was noted. KMT2A-r patients demonstrated very few additional mutations, while in the TCF3::ZNF384 case, lineage switch was accompanied by a large set of additional mutations. The immunophenotype of an existing leukemia sometimes changes via different mechanisms and with different additional molecular changes. Careful investigation of all BM compartments together with all molecular –minimal residual disease studies can lead to reliable identification of lineage switch.
Background
The presence of minimal/measurable residual disease (MRD) before or after hematopoietic stem cell transplantation (HSCT) is known as a predictor of poor outcome in patients with acute myeloid (AML) or lymphoblastic (ALL) leukemia. When performed with multiparameter flow cytometry (MFC), assessment of residual leukemic cells after HSCT may be limited by therapy‐induced shifts in the immunophenotype (e.g., loss of surface molecules used for therapeutic targeting). However, in such cases, questionable cells can be isolated and tested for hematopoietic chimerism to clarify their origin.
Methods
Questionable cell populations were detected during the MFC‐based MRD monitoring of 52 follow‐up bone marrow samples from 37 patients diagnosed with T cell neoplasms (n =14), B cell precursor ALL (n = 16), AML (n = 7). These cells (suspected leukemic or normal) were isolated by flow cell sorting and tested for hematopoietic chimerism by RTQ‐PCR.
Results
The origin of cells was successfully identified in 96.15% of cases (n = 50), which helped to validate the results of MFC‐based MRD monitoring.
Conclusions
We believe that a combination of MFC, cell sorting, and chimerism testing may help confirm or disprove MRD presence in complicated cases after HSCT.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.