RNA polymerase II (RNA pol II) is not only the fundamental enzyme for gene expression but also the central coordinator of co-transcriptional processing. RNA pol II associates with a large number of enzymes and protein/RNA-binding factors through its C-terminal domain (CTD) that consists of tandem repeats of the heptapeptide consensus Y(1)S(2)P(3) T(4)S(5)P(6)S(7). The CTD is posttranslationally modified, yielding specific patterns (often called the CTD code) that are recognized by appropriate factors in coordination with the transcription cycle. Serine phosphorylations are currently the best characterized elements of the CTD code; however, the roles of the proline isomerization and other modifications of the CTD remain poorly understood. The dynamic remodeling of the CTD modifications by kinases, phosphatases, isomerases, and other enzymes introduce changes in the CTD structure and dynamics. These changes serve as structural switches that spatially and temporally regulate the binding of processing factors. Recent structural studies of the CTD bound to various proteins have revealed the basic rules that govern the recognition of these switches and shed light on the roles of these protein factors in the assemblies of the processing machineries.
Pausing of transcribing RNA polymerase is regulated and creates opportunities to control gene expression. Research in metazoans has so far mainly focused on RNA polymerase II (Pol II) promoter-proximal pausing leaving the pervasive nature of pausing and its regulatory potential in mammalian cells unclear. Here, we developed a pause detecting algorithm (PDA) for nucleotide-resolution occupancy data and a new native elongating transcript sequencing approach, termed nested NET-seq, that strongly reduces artifactual peaks commonly misinterpreted as pausing sites. Leveraging PDA and nested NET-seq reveal widespread genome-wide Pol II pausing at single-nucleotide resolution in human cells. Notably, the majority of Pol II pauses occur outside of promoter-proximal gene regions primarily along the gene-body of transcribed genes. Sequence analysis combined with machine learning modeling reveals DNA sequence properties underlying widespread transcriptional pausing including a new pause motif. Interestingly, key sequence determinants of RNA polymerase pausing are conserved between human cells and bacteria. These studies indicate pervasive sequence-induced transcriptional pausing in human cells and the knowledge of exact pause locations implies potential functional roles in gene expression.
Pervasive transcription is a widespread phenomenon leading to the production of a plethora of non‐coding RNAs (ncRNAs) without apparent function. Pervasive transcription poses a threat to proper gene expression that needs to be controlled. In yeast, the highly conserved helicase Sen1 restricts pervasive transcription by inducing termination of non‐coding transcription. However, the mechanisms underlying the specific function of Sen1 at ncRNAs are poorly understood. Here, we identify a motif in an intrinsically disordered region of Sen1 that mimics the phosphorylated carboxy‐terminal domain (CTD) of RNA polymerase II, and structurally characterize its recognition by the CTD‐interacting domain of Nrd1, an RNA‐binding protein that binds specific sequences in ncRNAs. In addition, we show that Sen1‐dependent termination strictly requires CTD recognition by the N‐terminal domain of Sen1. We provide evidence that the Sen1‐CTD interaction does not promote initial Sen1 recruitment, but rather enhances Sen1 capacity to induce the release of paused RNAPII from the DNA. Our results shed light on the network of protein–protein interactions that control termination of non‐coding transcription by Sen1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.