Lava flows pose a hazard in volcanic environments and reset ecosystem development. A succession of dated lava flows provides the possibility to estimate the direction and rates of ecosystem development and can be used to predict future development. We examine plant succession, soil development and soil carbon (C) accretion on the historical (post 874 AD) lava flows formed by the Hekla volcano in south Iceland. Vegetation and soil measurements were conducted all around the volcano reflecting the diverse vegetation communities on the lavas, climatic conditions around Hekla mountain and various intensities in deposition of loose material. Multivariate analysis was used to identify groups with similar vegetation composition and patterns in the vegetation. The association of vegetation and soil parameters with lava age, mean annual temperature, mean annual precipitation and soil accumulation rate (SAR) was analysed. Soil carbon concentration increased with increasing lava age becoming comparable to concentrations found on the prehistoric lavas. The combination of a sub-Arctic climate, gradual soil thickening due to input of loose material and the specific properties of volcanic soils allow for continuing accumulation of soil carbon in the soil profile. Four successional stages were identified: initial colonization and cover coalescence (ICC) of Racomitrium lanuginosum and Stereocaulon spp. (lavas <70 years of age); secondary colonization (SC) – R. lanuginosum dominance (170−700 years); vascular plant dominance (VPD) (>600 years); and highland conditions/retrogression (H/R) by tephra deposition (70−860 years). The long time span of the SC stage indicates arrested development by the thick R. lanuginosum moss mat. The progression from SC into VPD was linked to age of the lava flows and soil depth, which was significantly deeper within the VPD stage. Birch was growing on lavas over 600 years old indicating the development towards birch woodland, the climax ecosystem in Iceland.
Lava flow thicknesses, volumes, and effusion rates provide essential information for understanding the behavior of eruptions and their associated deformation signals. Preeruption and posteruption elevation models were generated from historical stereo photographs to produce the lava flow thickness maps for the last five eruptions at Hekla volcano, Iceland. These results provide precise estimation of lava bulk volumes: V1947–1948 = 0.742 ± 0.138 km3, V1970 = 0.205 ± 0.012 km3, V1980–1981 = 0.169 ± 0.016 km3, V1991 = 0.241 ± 0.019 km3, and V2000 = 0.095 ± 0.005 km3 and reveal variable production rate through the 20th century. These new volumes improve the linear correlation between erupted volume and coeruption tilt change, indicating that tilt may be used to determine eruption volume. During eruptions the active vents migrate 325–480 m downhill, suggesting rough excess pressures of 8–12 MPa and that the gradient of this excess pressure increases from 0.4 to 11 Pa s−1 during the 20th century. We suggest that this is related to increased resistance along the eruptive conduit.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.