The role of the NH(3) ligands in the highly successful antitumour agents cisplatin and carboplatin is not fully understood. Suggestions that the ammonia ligands are involved in target recognition through hydrogen bond formation, e.g. with guanine-O6, have been questioned. Here, we review the roles and functions of NH(3) ligands of cis-PtCl(2)(NH(3))(2) and likewise of its trans-isomer in complexes with model nucleobases as well as other N-heterocyclic ligands. Specifically, their roles in hydrogen bonding interactions with nucleobases as well as anions, the influence on acid-base properties of co-ligands, their involvement in condensation reactions, as well as a variety of displacement reactions will be examined. As a result, it can be stated that the ammonia ligands in cis- and trans-Pt(II)(NH(3))(2) entities display additional features to those generally discussed in the last four decades since the discovery of the antitumour activity of cisplatin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.