BackgroundAngiotensin-converting enzyme (ACE), which metabolizes many peptides and plays a key role in blood pressure regulation and vascular remodeling, as well as in reproductive functions, is expressed as a type-1 membrane glycoprotein on the surface of endothelial and epithelial cells. ACE also presents as a soluble form in biological fluids, among which seminal fluid being the richest in ACE content - 50-fold more than that in blood.Methods/Principal FindingsWe performed conformational fingerprinting of lung and seminal fluid ACEs using a set of monoclonal antibodies (mAbs) to 17 epitopes of human ACE and determined the effects of potential ACE-binding partners on mAbs binding to these two different ACEs. Patterns of mAbs binding to ACEs from lung and from seminal fluid dramatically differed, which reflects difference in the local conformations of these ACEs, likely due to different patterns of ACE glycosylation in the lung endothelial cells and epithelial cells of epididymis/prostate (source of seminal fluid ACE), confirmed by mass-spectrometry of ACEs tryptic digests.ConclusionsDramatic differences in the local conformations of seminal fluid and lung ACEs, as well as the effects of ACE-binding partners on mAbs binding to these ACEs, suggest different regulation of ACE functions and shedding from epithelial cells in epididymis and prostate and endothelial cells of lung capillaries. The differences in local conformation of ACE could be the base for the generation of mAbs distingushing tissue-specific ACEs.
Angiotensin I-converting enzyme (ACE) hydrolyzes numerous peptides and is a critical participant in blood pressure regulation and vascular remodeling. Elevated tissue ACE levels are associated with increased risk for cardiovascular and respiratory disorders. Blood ACE concentrations are determined by proteolytic cleavage of ACE from the endothelial cell surface, a process that remains incompletely understood. In this study, we identified a novel ACE gene mutation (Arg532Trp substitution in the N domain of somatic ACE) that increases blood ACE activity 7-fold and interrogated the mechanism by which this mutation significantly increases blood ACE levels. We hypothesized that this ACE mutation disrupts the binding site for blood components which may stabilize ACE conformation and diminish ACE shedding. We identified the ACE-binding protein in the blood as lysozyme and also a Low Molecular Weight (LMW) ACE effector, bilirubin, which act in concert to regulate ACE conformation and thereby influence ACE shedding. These results provide mechanistic insight into the elevated blood level of ACE observed in patients on ACE inhibitor therapy and elevated blood lysozyme and ACE levels in sarcoidosis patients.
AimsAngiotensin-converting enzyme (ACE), which metabolizes many peptides and plays a key role in blood pressure regulation and vascular remodeling, is expressed as a type-1 membrane glycoprotein on the surface of different cells, including endothelial cells of the heart. We hypothesized that the local conformation and, therefore, the properties of heart ACE could differ from lung ACE due to different microenvironment in these organs.Methods and resultsWe performed ACE phenotyping (ACE levels, conformation and kinetic characteristics) in the human heart and compared it with that in the lung. ACE activity in heart tissues was 10–15 lower than that in lung. Various ACE effectors, LMW endogenous ACE inhibitors and HMW ACE-binding partners, were shown to be present in both heart and lung tissues. “Conformational fingerprint” of heart ACE (i.e., the pattern of 17 mAbs binding to different epitopes on the ACE surface) significantly differed from that of lung ACE, which reflects differences in the local conformations of these ACEs, likely controlled by different ACE glycosylation in these organs. Substrate specificity and pH-optima of the heart and lung ACEs also differed. Moreover, even within heart the apparent ACE activities, the local ACE conformations, and the content of ACE inhibitors differ in atria and ventricles.ConclusionsSignificant differences in the local conformations and kinetic properties of heart and lung ACEs demonstrate tissue specificity of ACE and provide a structural base for the development of mAbs able to distinguish heart and lung ACEs as a potential blood test for predicting atrial fibrillation risk.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.