A sterically constrained non-coded amino acid, 1-aminocyclopentane-1-carboxylic acid (Apc), was introduced in position 7 or 8 of the bradykinin (BK) B(2) receptor antagonist, [D-Arg(0), Hyp(3), Thi(5, 8), D-Phe(7)]BK, previously synthesized by Stewart's group. This modification is believed to reduce the flexibility of the peptides, thereby forcing the peptide backbone and side chains to adopt specific orientations. Apc substitution was combined with acylation of the N-terminus with 1-adamantaneacetic acid (Aaa). The activity of four new analogues was assayed in isolated rat uterus and in rat blood pressure tests. The results clearly demonstrated that the Apc residue inserted in position 7 led to a reduction of antagonistic properties in the rat uterus assay or even restored the agonism in the blood pressure test, whereas Apc at position 8 enhanced antagonistic potency in both the tests. In both cases, acylation of the N-terminus led to the enhancement of the antagonistic potency. On the basis of these findings, new potent and selective B(2) blockers might be designed.
Our previous studies suggested that acylation of the N-terminus of several known B2 antagonists with various kinds of bulky acyl groups consistently improved their antagonistic potency in rat blood pressure assay. On the other hand, our earlier observations also seemed to suggest that the effects of acylation on the contractility of isolated rat uterus depended substantially on the chemical character of the acyl group, as we observed that this modification might either change the range of antagonism or even transform it into agonism. Bearing all this in mind, we decided to synthesize seven new analogues of bradykinin by N-terminal acylation with various acyl groups of a moderately potent B2 antagonist, previously synthesized by Stewart's group, D-Arg-Arg-Pro-Hyp-Gly-Thr-Ser-D-Phe-Thi-Arg. The analogues were tested in vitro for their blood pressure-lowering and uterotonic activities. The modifications either preserved or increased the antagonistic potency in the rat blood pressure test. On the other hand, all seven substituents negatively influenced the interaction with the rat uterine receptors. Our results may be helpful for designing new B2 agonists and antagonists.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.