bResistance to rifampin (RIF) and rifabutin (RFB) in Mycobacterium tuberculosis is associated with mutations within an 81-bp region of the rpoB gene (RIF resistance-determining region [RRDR]). Previous studies have shown that certain mutations in this region are more likely to confer high levels of RIF resistance, while others may be found in phenotypically susceptible isolates. In this study, we sought to determine the relationship between the MICs of RIF and RFB and rpoB RRDR mutations in 32 multidrug-resistant (MDR), 4 RIF-monoresistant, and 5 susceptible M. tuberculosis clinical isolates. The MICs were determined using the MGIT 960 system. Mutations in the rpoB RRDR were determined by Sanger sequencing. RpoB proteins with mutations S531L (a change of S to L at position 531), S531W, H526Y, and H526D and the double mutation D516A-R529Q were associated with high MICs for RIF and RFB. Five isolates carrying the mutations L511P, H526L, H526N, and D516G-S522L were found to be susceptible to RIF. Several mutations were associated with resistance to RIF and susceptibility to RFB (F514FF, D516V, and S522L). Whole-genome sequencing of two MDR isolates without rpoB RRDR mutations revealed a mutation outside the RRDR (V146F; RIF MIC of 50 g/ml). The implications of the polymorphisms identified in the second of these isolates in RIF resistance need to be further explored. Our study further establishes a correlation between the mutations and the MICs of RIF and, also, RFB in M. tuberculosis. Several rpoB mutations were identified in RIF-and RFB-susceptible isolates. The clinical significance of these findings requires further exploration. Until then, a combination of phenotypic and molecular testing is advisable for drug susceptibility testing.
The present work describes the abrupt emergence of Klebsiella pneumoniae carbapenemase (KPC) and characterizes the first 79 KPC-producing enterobacteria from Argentina (isolated from 2006 to 2010). The emergence of bla(KPC-2) was characterized by two patterns of dispersion: the first was the sporadic occurrence in diverse enterobacteria from distant geographical regions, harbouring plasmids of different incompatibility groups and bla(KPC-2) in an unusual genetic environment flanked by ISKpn8-Δbla(TEM-1) and ISKpn6-like. bla(KPC-2) was associated with IncL/M transferable plasmids; the second was the abrupt clonal spread of K. pneumoniae ST258 harbouring bla(KPC-2) in Tn4401a.
We report a NDM-1-producing K. pneumoniae outbreak in Ontario, Canada. Implementation of standard infection control practices, including active screening was able to contain the spread of this organism in the hospital setting. Of concern is the potential loss of a travel history to identify patients that are at high risk of being colonized or infected with this organism and the lack of an accurate, cost-effective test that can be implemented in the hospital setting to identify these multidrug-resistant organisms.
Due to the lack of detailed reports of Klebsiella pneumoniae carbapenemase (KPC)-producing enterobacteria in Ontario, Canada, we perform a molecular characterization of KPC-producing Enterobacteriaceae submitted to the provincial reference laboratory from 2008 to 2011. Susceptibility profiles were accessed by E-test. Molecular types of isolates were determined by pulse-field gel electrophoresis (PFGE) and multilocus sequence typing. Screening of ß-lactamase genes was performed by multiplex PCR and alleles were identified by DNA sequencing. The genetic platform of bla KPC gene was analyzed by PCR. Plasmid replicons were typed using PCR-based typing approach. KPC-plasmids were also evaluated by S1 nuclease-PFGE and Southern blot. Thirty unique clinical isolates (26 Klebsiella pneumoniae, 2 Enterobacter cloacae, 1 Citrobacter freundii and 1 Raoultella ornithinolytica) were identified as bla KPC positive: 4 in 2008, 3 in 2009, 10 in 2010 and 13 in 2011. The majority exhibited resistance to carbapenems, cephalosporins and fluoroquinolones and two isolates were also resistant to colistin. The isolates harbored bla KPC-2 (n = 23) or bla KPC-3 (n = 7). bla TEM-1 (n = 27) was commonly detected and occasionally bla OXA-1 (n = 3) and bla CTX-M-15 (n = 1). As expected, all K. pneumoniae isolates carried bla SHV-11. bla KPC genes were identified on Tn4401a (n = 20) or b (n = 10) isoforms, on plasmids of different sizes belonging to the incompatibility groups IncFIIA (n = 19), IncN (n = 3), IncI2 (n = 3), IncFrep (n = 2) and IncA/C (n = 1). The occurrence of KPC ß-lactamase in Ontario was mainly associated with the spread of the K. pneumoniae clone ST258.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.