In our age of big data and growing computational power, versatility in data analysis is important. This study presents a flexible way to combine statistics and machine learning for data analysis of a large-scale educational survey. The authors used statistical and machine learning methods to explore German students' attitudes towards information and communication technology (ICT) in relation to mathematical and scientific literacy measured by the Programme for International Student Assessment (PISA) in 2015 and 2018. Implementations of the random forest (RF) algorithm were applied to impute missing data and to predict students' proficiency levels in mathematics and science. Hierarchical linear models (HLM) were built to explore relationships between attitudes towards ICT and mathematical and scientific literacy with the focus on the nested structure of the data. ICT autonomy was an important variable in RF models, and associations between this attitude and literacy scores in HLM were significant and positive, while for other ICT attitudes the associations were negative (ICT in social interaction) or non-significant (ICT competence and ICT interest). The need for further research on ICT autonomy is discussed, and benefits of combining statistical and machine learning approaches are outlined.
Scholarly knowledge graphs provide researchers with a novel modality of information retrieval, and their wider use in academia is beneficial for the digitalization of published works and the development of scholarly communication. To increase the acceptance of scholarly knowledge graphs, we present a dashboard, which visualizes the research contributions on an educational science topic in the frame of the Open Research Knowledge Graph (ORKG). As dashboards are created at the intersection of computer science, graphic design, and human-technology interaction, we used these three perspectives to develop a multi-relational visualization tool aimed at improving the user experience. According to preliminary results of the user evaluation survey, the dashboard was perceived as more appealing than the baseline ORKG-powered interface. Our findings can be used for the development of scholarly knowledge graph-powered dashboards in different domains, thus facilitating acceptance of these novel instruments by research communities and increasing versatility in scholarly communication.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.