Disturbance regimes are changing in forests across the world in response to global climate change. Despite the profound impacts of disturbances on ecosystem services and biodiversity, assessments of disturbances at the global scale remain scarce. Here, we analyzed natural disturbances in boreal and temperate forest ecosystems for the period 2001–2014, aiming to 1) quantify their within‐ and between‐biome variation and 2) compare the climate sensitivity of disturbances across biomes. We studied 103 unmanaged forest landscapes with a total land area of 28.2 × 106 ha, distributed across five continents. A consistent and comprehensive quantification of disturbances was derived by combining satellite‐based disturbance maps with local expert knowledge of disturbance agents. We used Gaussian finite mixture models to identify clusters of landscapes with similar disturbance activity as indicated by the percent forest area disturbed as well as the size, edge density and perimeter–area‐ratio of disturbed patches. The climate sensitivity of disturbances was analyzed using Bayesian generalized linear mixed effect models and a globally consistent climate dataset. Within‐biome variation in natural disturbances was high in both boreal and temperate biomes, and disturbance patterns did not vary systematically with latitude or biome. The emergent clusters of disturbance activity in the boreal zone were similar to those in the temperate zone, but boreal landscapes were more likely to experience high disturbance activity than their temperate counterparts. Across both biomes high disturbance activity was particularly associated with wildfire, and was consistently linked to years with warmer and drier than average conditions. Natural disturbances are a key driver of variability in boreal and temperate forest ecosystems, with high similarity in the disturbance patterns between both biomes. The universally high climate sensitivity of disturbances across boreal and temperate ecosystems indicates that future climate change could substantially increase disturbance activity.
Moss polsters, pollen traps and lake surface sediment samples are commonly used as climate calibration data or as modern analogues for reconstructing vegetation from fossil profiles, but the differences in pollen content between these media have received little attention. This study aims to analyse how the three media differ in reflecting individual vegetation types and spatial differences in vegetation. 119 modern samples (64 moss polsters, 37 lake surface sediment samples and 18 pollen traps from which a collection was made annually) were taken from northern Fennoscandia and the Kola Peninsula as a broad transect crossing the northernmost forest limits of Betula pubescens ssp. czerepanovii (mountain birch), Pinus sylvestris (Scots pine) and Picea abies (Norway spruce). The pollen assemblages from these samples were compared with the surrounding vegetation visually and via PCA (principle components analysis) and cluster analysis. Both comparisons allow a correct distinction between pollen assemblages of arctic/alpine heath, mountain birch dominated areas, and boreal coniferous forests. The differences between the vegetation zones are stronger than the differences between the sampling media. Nevertheless, lake sediment samples from the mountain birch woodland zone tend to overestimate pine and underestimate birch. Pollen traps are biased towards lower tree pollen percentages and higher values of shrubs, herbs and Cyperaceae. This bias is especially strong in traps that have missing years in the data. Irrespective of the vegetation zone, pollen traps tend to have lower Pinus pollen percentages than in the adjacent moss polsters.
Abstract. Sedimentary charcoal records are widely used to reconstruct regional changes in fire regimes through time in the geological past. Existing global compilations are not geographically comprehensive and do not provide consistent metadata for all sites. Furthermore, the age models provided for these records are not harmonised and many are based on older calibrations of the radiocarbon ages. These issues limit the use of existing compilations for research into past fire regimes. Here, we present an expanded database of charcoal records, accompanied by new age models based on recalibration of radiocarbon ages using IntCal20 and Bayesian age-modelling software. We document the structure and contents of the database, the construction of the age models, and the quality control measures applied. We also record the expansion of geographical coverage relative to previous charcoal compilations and the expansion of metadata that can be used to inform analyses. This first version of the Reading Palaeofire Database contains 1676 records (entities) from 1480 sites worldwide. The database (RPDv1b – Harrison et al., 2021) is available at https://doi.org/10.17864/1947.000345.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.