According to the model of translation initiation in eukaryotes, the 40S ribosomal subunit binds to capped 5′-end of mRNA and subsequently migrates along 5′-UTR in searching for initiation codon. However, it remains unclear whether the migration is the result of a random one-dimensional diffusion, or it is an energy-driven unidirectional movement. To address this issue, the method of continuous monitoring of protein synthesis in situ was used for high precision measurements of the times required for translation of mRNA with 5′-UTRs of different lengths and structures in mammalian and plant cell-free systems. For the first time, the relationship between the scanning time and the 5′-UTR length was determined and their linear correlation was experimentally demonstrated. The conclusion is made that the ribosome migration is an unidirectional motion with the rate being virtually independent of a particular mRNA sequence and secondary structure.
Inhibition of primer extension by ribosome–mRNA complexes (toeprinting) is a proven and powerful technique for studying mechanisms of mRNA translation. Here we have assayed an advanced toeprinting approach that employs fluorescently labeled DNA primers, followed by capillary electrophoresis utilizing standard instruments for sequencing and fragment analysis. We demonstrate that this improved technique is not merely fast and cost-effective, but also brings the primer extension inhibition method up to the next level. The electrophoretic pattern of the primer extension reaction can be characterized with a precision unattainable by the common toeprint analysis utilizing radioactive isotopes. This method allows us to detect and quantify stable ribosomal complexes at all stages of translation, including initiation, elongation and termination, generated during the complete translation process in both the in vitro reconstituted translation system and the cell lysate. We also point out the unique advantages of this new methodology, including the ability to assay sites of the ribosomal complex assembly on several mRNA species in the same reaction mixture.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.