The family of ribosomal proteins S1 contains about 20% of all bacterial proteins including the S1 domain. An important feature of this family is multiple copies of structural domains in bacteria, the number of which changes in a strictly limited range from one to six. In this study, the automated exhaustive analysis of 1453 sequences of S1 allowed us to demonstrate that the number of domains in S1 is a distinctive characteristic for phylogenetic bacterial grouping in main phyla. 1453 sequences of S1 were identified in 25 out of 30 different phyla according to the List of Prokaryotic Names with Standing in Nomenclature. About 62% of all records are identified as six-domain S1 proteins, which belong to phylum Proteobacteria. Four-domain S1 are identified mainly in proteins from phylum Firmicutes and Actinobacteria. Records belonging to these phyla are 33% of all records. The least represented two-domain S1 are about 0.6% of all records. The third and fourth domains for the most representative four- and six-domain S1 have the highest percentage of identity with the S1 domain from polynucleotide phosphorylase and S1 domains from one-domain S1. In addition, for these groups, the central part of S1 (the third domain) is more conserved than the terminal domains.
It has been demonstrated using Aβ40 and Aβ42 recombinant and synthetic peptides that their fibrils are formed of complete oligomer ring structures. Such ring structures have a diameter of about 8-9 nm, an oligomer height of about 2- 4 nm, and an internal diameter of the ring of about 3-4 nm. Oligomers associate in a fibril in such a way that they interact with each other, overlapping slightly. There are differences in the packing of oligomers in fibrils of recombinant and synthetic Aβ peptides. The principal difference is in the degree of orderliness of ring-like oligomers that leads to generation of morphologically different fibrils. Most ordered association of ring-like structured oligomers is observed for a recombinant Aβ40 peptide. Less ordered fibrils are observed with the synthetic Aβ42 peptide. Fragments of fibrils the most protected from the action of proteases have been determined by tandem mass spectrometry. It was shown that unlike Aβ40, fibrils of Aβ42 are more protected, showing less ordered organization compared to that of Aβ40 fibrils. Thus, the mass spectrometry data agree with the electron microscopy data and structural models presented here.
Controlling the aggregation of vital bacterial proteins could be one of the new research directions and form the basis for the search and development of antibacterial drugs with targeted action. Such approach may be considered as an alternative one to antibiotics. Amyloidogenic regions can, like antibacterial peptides, interact with the “parent” protein, for example, ribosomal S1 protein (specific only for bacteria), and interfere with its functioning. The aim of the work was to search for peptides based on the ribosomal S1 protein from T. thermophilus, exhibiting both aggregation and antibacterial properties. The biological system of the response of Gram-negative bacteria T. thermophilus to the action of peptides was characterized. Among the seven studied peptides, designed based on the S1 protein sequence, the R23I (modified by the addition of HIV transcription factor fragment for bacterial cell penetration), R23T (modified), and V10I (unmodified) peptides have biological activity that inhibits the growth of T. thermophilus cells, that is, they have antimicrobial activity. But, only the R23I peptide had the most pronounced activity comparable with the commercial antibiotics. We have compared the proteome of peptide-treated and intact T. thermophilus cells. These important data indicate a decrease in the level of energy metabolism and anabolic processes, including the processes of biosynthesis of proteins and nucleic acids. Under the action of 20 and 50 μg/mL R23I, a decrease in the number of proteins in T. thermophilus cells was observed and S1 ribosomal protein was absent. The obtained results are important for understanding the mechanism of amyloidogenic peptides with antimicrobial activity and can be used to develop new and improved analogues.
MS2 phage RNA-directed synthesis of an N-terminal polypeptide of the phage coat protein on Escherichia coli 70 S ribosomes was initiated in a cell-free system with the N-dinitrophenyl derivative of methionyltRNAp and performed in the absence of tyrosine, lysine, cysteine and methionine. As a result, the translating ribosomes carried peptides up to 42 amino acid residues in length with the dinitrophenyl hapten at the N-ends. Using the immune electron microscopy technique the positions of the nascent peptide N-ends on the 70 S ribosomes have been visualized. It has been found that (i) the N-ends of nascent peptides of these lengths are accessible to antibodies, (ii) the exit site of a nascent peptide is the pocket between the base of the central protuberance and the Ll ridge on the 50 S subunit, i.e. presumably its peptidyl transferase center, and (iii) the further pathway of a nascent peptide seems to proceed along the groove on the external surface of the 50 S subunit.Ribosome; MS2 phage; RNA; Nascent polypeptide; Immune electron microscopy
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.