The potential and drivers of microbial methane removal in the water column of seasonally stratified coastal ecosystems and the importance of the methanotrophic community composition for ecosystem functioning are not well explored. Here, we combined depth profiles of oxygen and methane with 16S rRNA gene amplicon sequencing, metagenomics and methane oxidation rates at discrete depths in a stratified coastal marine system (Lake Grevelingen, The Netherlands). Three amplicon sequence variants (ASVs) belonging to different genera of aerobic Methylomonadaceae and the corresponding three methanotrophic metagenome‐assembled genomes (MOB‐MAGs) were retrieved by 16S rRNA sequencing and metagenomic analysis, respectively. The abundances of the different methanotrophic ASVs and MOB‐MAGs peaked at different depths along the methane oxygen counter‐gradient and the MOB‐MAGs show a quite diverse genomic potential regarding oxygen metabolism, partial denitrification and sulphur metabolism. Moreover, potential aerobic methane oxidation rates indicated high methanotrophic activity throughout the methane oxygen counter‐gradient, even at depths with low in situ methane or oxygen concentration. This suggests that niche‐partitioning with high genomic versatility of the present Methylomonadaceae might contribute to the functional resilience of the methanotrophic community and ultimately the efficiency of methane removal in the stratified water column of a marine basin.
Continental shelf sediments are a key source of trace metals to the ocean. In this study, we investigate the impact of sedimentary processes on water column concentrations of iron (Fe), manganese (Mn), cobalt (Co), and nickel (Ni) at five stations on the Louisiana continental shelf and slope, Gulf of Mexico. The highest trace metal concentrations were observed close to the seafloor at the most nearshore shelf station (water depth of 16 m), with most of the metals present in particulate form. This enrichment in the bottom water is likely the combined effect of input of trace metals in suspended matter from the Mississippi/Atchafalaya Rivers and, for Mn, Co, and Ni, benthic release from the shelf sediments. While particulate matter was the dominant carrier of Fe and Mn in bottom waters in the shelf and slope regions, Co and Ni were nearly exclusively present in dissolved form. Hence, lateral transport of Co and Ni in shelf waters is decoupled from that of Fe and Mn. Concentrations of particulate and dissolved trace metals in the water column generally decreased from the shelf to the slope, while those in the sediment increased. This suggests an increased retention of metals deposited on the sediment with distance from the coast, linked to the decrease in organic matter input and associated reductive sediment processes. The offshore decline in sediment trace metal mobilization is likely typical for river-dominated continental margins where most organic matter is deposited close to the coast.
The potential and drivers of microbial methane removal in the water column of seasonally stratified coastal ecosystems and the importance of the methanotrophic community composition for ecosystem functioning are not well explored. Here, we combined depth profiles of oxygen and methane with 16S rRNA gene amplicon sequencing, metagenomics, and methane oxidation rates at discrete depths in a stratified coastal marine system (Lake Grevelingen, The Netherlands). Three amplicon sequence variants (ASVs) belonging to different genera of aerobic Methylomonadaceae and the corresponding three methanotrophic metagenome-assembled genomes (MOB-MAGs) were retrieved by 16S rRNA sequencing and metagenomic analysis respectively. The abundances of the different methanotrophic ASVs and MOB-MAGs peaked at different depths along the methane oxygen counter-gradient and the MOB-MAGs show a quite diverse genomic potential regarding oxygen metabolism, partial denitrification, and sulfur metabolism. Moreover, potential aerobic methane oxidation rates indicated high methanotrophic activity throughout the methane oxygen counter-gradient, even at depths with low in situ methane or oxygen concentration. This suggests that niche-partitioning with high genomic versatility of the present Methylomonadaceae might contribute to the functional resilience of the methanotrophic community and ultimately the efficiency of methane removal in the stratified water column of marine Lake Grevelingen.
Methane (CH4) is a key greenhouse gas. Coastal areas account for a major proportion of marine CH4 emissions. Eutrophication and associated bottom water hypoxia enhance CH4 production in coastal sediments. Here, we assess the fate of CH4 produced in sediments at a site in a seasonally anoxic eutrophic coastal marine basin (Scharendijke, Lake Grevelingen, the Netherlands) in spring (March) and late summer (September) in 2020. Removal of CH4 in the sediment through anaerobic oxidation with sulfate (SO42-) is known to be incomplete in this system, as confirmed here by only slightly higher values of δ13C-CH4 and δD-CH4 in the porewater in the shallow sulfate-methane-transition zone (~5-15 cm sediment depth) when compared to deeper sediment layers. In March 2020, when the water column was fully oxygenated, CH4 that escaped from the sediment was at least partially removed in the bottom water through aerobic oxidation. In September 2020, when the water column was anoxic below ~35 m water depth, CH4 accumulated to high concentrations (up to 73 µmol L-1) in the waters below the oxycline. The sharp counter gradient in oxygen and CH4 concentrations at ~35 m depth and increase in δ13C-CH4 and δD-CH4 above the oxycline indicate mostly aerobic water column removal of CH4. Water column profiles of particulate and dissolved Fe and Mn suggest redox cycling of both metals at the oxycline, pointing towards a potential role of metal oxides in CH4 removal. Water column profiles of NH4+ and NO3- indicate removal of both solutes near the oxycline. Analyses of 16S rRNA gene sequences retrieved from the water column reveal the presence of aerobic CH4 oxidizing bacteria (Methylomonadaceae) and anaerobic methanotrophic archaea (Methanoperedenaceae), with the latter potentially capable of NO3- and/or metal-oxide dependent CH4 oxidation, near the oxycline. Overall, our results indicate sediment and water column removal of CH4 through a combination of aerobic and anaerobic pathways, which vary seasonally. Some of the CH4 appears to escape from the surface waters to the atmosphere, however. We conclude that eutrophication may make coastal waters a more important source of CH4 to the atmosphere than commonly assumed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.