BackgroundPfs25 and Pvs25, surface proteins of mosquito stage of the malaria parasites P. falciparum and P. vivax, respectively, are leading candidates for vaccines preventing malaria transmission by mosquitoes. This single blinded, dose escalating, controlled Phase 1 study assessed the safety and immunogenicity of recombinant Pfs25 and Pvs25 formulated with Montanide ISA 51, a water-in-oil emulsion.Methodology/Principal FindingsThe trial was conducted at The Johns Hopkins Center for Immunization Research, Washington DC, USA, between May 16, 2005–April 30, 2007. The trial was designed to enroll 72 healthy male and non-pregnant female volunteers into 1 group to receive adjuvant control and 6 groups to receive escalating doses of the vaccines. Due to unexpected reactogenicity, the vaccination was halted and only 36 volunteers were enrolled into 4 groups: 3 groups of 10 volunteers each were immunized with 5 µg of Pfs25/ISA 51, 5 µg of Pvs25/ISA 51, or 20 µg of Pvs25/ISA 51, respectively. A fourth group of 6 volunteers received adjuvant control (PBS/ISA 51). Frequent local reactogenicity was observed. Systemic adverse events included two cases of erythema nodosum considered to be probably related to the combination of the antigen and the adjuvant. Significant antibody responses were detected in volunteers who completed the lowest scheduled doses of Pfs25/ISA 51. Serum anti-Pfs25 levels correlated with transmission blocking activity.Conclusion/SignificanceIt is feasible to induce transmission blocking immunity in humans using the Pfs25/ISA 51 vaccine, but these vaccines are unexpectedly reactogenic for further development. This is the first report that the formulation is associated with systemic adverse events including erythema nodosum.Trial RegistrationClinicalTrials.gov NCT00295581
Enzyme linked immunosorbent assay (ELISA) has been widely used to measure antibody titers for evaluating the immunogenicity of a vaccine. However, there is as yet no generally accepted way of expressing the ELISA results in the case of experimental vaccines, since there is usually no uniform standard. Both end point and single dilution methods have significant disadvantages. In this paper, we obtained reproducible data with fewer dilutions of samples by addition of serially diluted standard serum to each ELISA plate. Since this ELISA method gives reliable antibody titer with less labor than other methods, it can strongly support vaccine development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.