Key Points• RUNX1 inhibits erythroid differentiation by downregulation of the erythroid gene expression program.• RUNX1 can act as an activator and repressor during megakaryocytic differentiation and counteracts the activity of TAL1.The activity of antagonizing transcription factors represents a mechanistic paradigm of bidirectional lineage-fate control during hematopoiesis. At the megakaryocytic/erythroid bifurcation, the crossantagonism of krueppel-like factor 1 (KLF1) and friend leukemia integration 1 (FLI1) has such a decisive role. However, how this antagonism is resolved during lineage specification is poorly understood. We found that runt-related transcription factor 1 (RUNX1) inhibits erythroid differentiation of murine megakaryocytic/erythroid progenitors and primary human CD34 1 progenitor cells. We show that RUNX1 represses the erythroid gene expression program during megakaryocytic differentiation by epigenetic repression of the erythroid master regulator KLF1. RUNX1 binding to the KLF1 locus is increased during megakaryocytic differentiation and counterbalances the activating role of T-cell acute lymphocytic leukemia 1 (TAL1). We found that corepressor recruitment by RUNX1 contributes to a block of the KLF1-dependent erythroid gene expression program.Our data indicate that the repressive function of RUNX1 influences the balance between erythroid and megakaryocytic differentiation by shifting the balance between KLF1 and FLI1 in the direction of FLI1. Taken together, we show that RUNX1 is a key player within a network of transcription factors that represses the erythroid gene expression program. (Blood. 2015;125(23):3570-3579) IntroductionThe hematopoietic system is in a constant process of cell proliferation, differentiation, and cell death. Progenitor cells produced by hematopoietic stem cells undergo a hierarchical progression in which the selfrenewal capability is lost and a specific lineage determination is adopted. [1][2][3] In this process, genes important for stem cell functions are downregulated and the expression of genes important for differentiation and cell type-specific functions is upregulated. Transcription factors initiate and maintain cell-specific expression by binding to regulatory sequences of target genes and by recruitment of generegulative complexes with DNA-and histone-modifying activity. These epigenetic modifications reorganize the chromatin locally and genome-wide to sustain a cell type-specific gene expression pattern. [4][5][6] Antagonizing transcription factors play an important role in the establishment of cell type-specific gene expression programs during hematopoietic differentiation. 7 At the megakaryocytic/erythroid bifurcation, the crossantagonism of the transcription factors krueppel-like factor 1 (KLF1) and friend leukemia integration 1 (FLI1) plays such a decisive role. 8,9 However, the mechanism of how this antagonism is resolved is poorly understood. During differentiation of common megakaryocyte/erythroid progenitor cells (MEPs) 10 toward the megakaryoc...
The coordinated recruitment of epigenetic regulators of gene expression by transcription factors such as RUNX1 (AML1, acute myeloid leukemia 1) is crucial for hematopoietic differentiation. Here, we identify protein arginine methyltransferase 6 (PRMT6) as a central functional component of a RUNX1 corepressor complex containing Sin3a and HDAC1 in human hematopoietic progenitor cells. PRMT6 is recruited by RUNX1 and mediates asymmetric histone H3 arginine-2 dimethylation (H3R2me2a) at megakaryocytic genes in progenitor cells. H3R2me2a keeps RUNX1 target genes in an intermediate state with concomitant H3K27me3 and H3K4me2 but not H3K4me3. Upon megakaryocytic differentiation PRMT6 binding is lost, the H3R2me2a mark decreases and a coactivator complex containing WDR5/MLL and p300/pCAF is recruited. This leads to an increase of H3K4me3 and H3K9ac, which result in augmented gene expression. Our results provide novel mechanistic insight into how RUNX1 activity in hematopoietic progenitor cells maintains differentiation genes in a suppressed state but poised for rapid transcriptional activation.
Bacterial toxins are known to be effective for cancer therapy. Clostridium perfringens enterotoxin (CPE) is produced by the bacterial Clostridium type A strain. The transmembrane proteins claudin-3 and -4, often overexpressed in numerous human epithelial tumors (for example, colon, breast, pancreas, prostate and ovarian), are the targeted receptors for CPE. CPE binding to them triggers formation of membrane pore complexes leading to rapid cell death. In this study, we aimed at selective tumor cell killing by CPE gene transfer. We generated expression vectors bearing the bacterial wild-type CPE cDNA (wtCPE) or translationoptimized CPE (optCPE) cDNA for in vitro and in vivo gene therapy of claudin-3-and -4-overexpressing tumors. The CPE expression analysis at messenger RNA and protein level revealed more efficient expression of optCPE compared with wtCPE. Expression of optCPE showed rapid cytotoxic activity, hightened by CPE release as bystander effect. Cytotoxicity of up to 100% was observed 72 h after gene transfer and is restricted to claudin-3-and -4-expressing tumor lines. MCF-7 and HCT116 cells with high claudin-4 expression showed dramatic sensitivity toward CPE toxicity. The claudin-negative melanoma line SKMel-5, however, was insensitive toward CPE gene transfer. The non-viral intratumoral in vivo gene transfer of optCPE led to reduced tumor growth in MCF-7 and HCT116 tumor-bearing mice compared with the vector-transfected control groups. This novel approach demonstrates that CPE gene transfer can be employed for a targeted suicide gene therapy of claudin-3-and -4-overexpressing tumors, leading to the rapid and efficient tumor cell killing in vitro and in vivo.
In an attempt to reconstruct early alveolate evolution, we have examined the phylogenetic position of colpodellids by analyzing small subunit rDNA sequences from Colpodella pontica Myl'nikov 2000 and Colpodella sp. (American Type Culture Collection 50594). All phylogenetic analyses grouped the colpodellid sequences together with strong support and placed them strongly within the Alveolata. Most analyses showed colpodellids as the sister group to an apicomplexan clade, albeit with weak support. Sequences from two perkinsids, Perkinsus and Parvilucifera, clustered together and consistently branched as the sister group to dinoflagellates as shown previously. These data demonstrate that colpodellids and perkinsids are plesiomorphically similar in morphology and help provide a phylogenetic framework for inferring the combination of character states present in the last common ancestor of dinoflagellates and apicomplexans. We can infer that this ancestor was probably a myzocytotic predator with two heterodynamic flagella, micropores, trichocysts, rhoptries, micronemes, a polar ring, and a coiled open-sided conoid. This ancestor also very likely contained a plastid, but it is presently not certain whether it was photosynthetic, and it is not clear whether extant perkinsids or colpodellids have retained the organelle.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.