Cosmochemical, geochemical, and geophysical studies provide evidence that Earth's core contains iron with substantial (5 to 15%) amounts of nickel. The iron-nickel alloy Fe(0.9)Ni(0.1) has been studied in situ by means of angle-dispersive x-ray diffraction in internally heated diamond anvil cells (DACs), and its resistance has been measured as a function of pressure and temperature. At pressures above 225 gigapascals and temperatures over 3400 kelvin, Fe(0.9)Ni(0.1) adopts a body-centered cubic structure. Our experimental and theoretical results not only support the interpretation of shockwave data on pure iron as showing a solid-solid phase transition above about 200 gigapascals, but also suggest that iron alloys with geochemically reasonable compositions (that is, with substantial nickel, sulfur, or silicon content) adopt the bcc structure in Earth's inner core.
International audienceThe lower mantle is dominated by a magnesium- and iron-bearing mineral with the perovskite structure. Iron has the ability to adopt different electronic configurations, and transitions in its spin state in the lower mantle can significantly influence mantle properties and dynamics. However, previous studies aimed at understanding these transitions have provided conflicting results1–4. Here we report the results of high-pressure (up to 110 GPa) and high-temperature (up to 1,000 K) experiments aimed at understanding spin transitions of iron in perovskite at lower-mantle conditions . Our M¨ossbauer and nuclear forward scattering data for two lower-mantle perovskite compositions demonstrate that the transition of ferrous iron from the high-spin to the intermediate-spin state occurs at approximately 30 GPa, and that high temperatures favour the stability of the intermediate-spin state. We therefore infer that ferrous iron adopts the intermediate-spin state throughout the bulk of the lower mantle. Our X-ray data show significant anisotropic compression of lower-mantle perovskite containing intermediate-spin ferrous iron, which correlates strongly with the spin transition. We predict spin-state heterogeneities in the uppermost part of the lower mantle associated with sinking slabs and regions of upwelling. These may affect local properties, including thermal and electrical conductivity, deformation (viscosity) and chemical behaviour, and thereby affect mantle dynamics
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.