Increasingly, organizations capture, transform and analyze enormous data sets. Prominent examples include internet companies and e-science. The Map-Reduce scalable dataflow paradigm has become popular for these applications. Its simple, explicit dataflow programming model is favored by some over the traditional high-level declarative approach: SQL. On the other hand, the extreme simplicity of Map-Reduce leads to much low-level hacking to deal with the many-step, branching dataflows that arise in practice. Moreover, users must repeatedly code standard operations such as join by hand. These practices waste time, introduce bugs, harm readability, and impede optimizations. Pig is a high-level dataflow system that aims at a sweet spot between SQL and Map-Reduce. Pig offers SQL-style high-level data manipulation constructs, which can be assembled in an explicit dataflow and interleaved with custom Map-and Reduce-style functions or executables. Pig programs are compiled into sequences of Map-Reduce jobs, and executed in the Hadoop Map-Reduce environment. Both Pig and Hadoop are open-source projects administered by the Apache Software Foundation. This paper describes the challenges we faced in developing Pig, and reports performance comparisons between Pig execution and raw Map-Reduce execution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.