Human obesity is associated with low-grade chronic systemic inflammation, alterations in brain structure and function, and cognitive impairment. Rodent models of obesity show that high-calorie diets cause brain inflammation (neuroinflammation) in multiple regions, including the hippocampus, and impairments in hippocampal-dependent memory tasks. To determine if similar effects exist in humans with obesity, we applied Diffusion Basis Spectrum Imaging (DBSI) to evaluate neuroinflammation and axonal integrity. We examined diffusion-weighted magnetic resonance imaging (MRI) data in two independent cohorts of obese and non-obese individuals (Cohort 1: 25 obese/21 non-obese; Cohort 2: 18 obese/41 non-obese). We applied Tract-based Spatial Statistics (TBSS) to allow whole-brain white matter (WM) analyses and compare DBSI-derived isotropic and anisotropic diffusion measures between the obese and nonobese groups. In both cohorts, the obese group had significantly greater DBSI-derived restricted fraction (DBSI-RF; an indicator of neuroinflammation-related cellularity), and significantly lower DBSI-derived fiber fraction (DBSI-FF; an indicator of apparent axonal density) in several WM tracts (all corrected p < 0.05). Moreover, using region of interest analyses, average DBSI-RF and DBSI-FF values in the hippocampus were significantly greater and lower, respectively, in obese relative to non-obese individuals (Cohort 1: p = 0.045; Cohort 2: p = 0.008). Hippocampal DBSI-FF and DBSI-RF and amygdalar DBSI-FF metrics related to cognitive performance in Cohort 2. In conclusion, these findings suggest that greater neuroinflammation-related cellularity and lower apparent axonal density are associated with human obesity and cognitive performance. Future studies are warranted to determine a potential role for neuroinflammation in obesity-related cognitive impairment.
Wolfram syndrome is a rare disease caused by mutations in the WFS1 gene leading to symptoms in early to mid-childhood. Brain structural abnormalities are present even in young children, but it is not known when these abnormalities arise. Such information is critical in determining optimal outcome measures for clinical trials and in understanding the aberrant neurobiological processes in Wolfram syndrome. Using voxel-wise and regional longitudinal analyses, we compared brain volumes in Wolfram patients (n = 29; ages 5–25 at baseline; mean follow-up = 3.6 years), to age and sex-equivalent controls (n = 52; ages 6–26 at baseline; mean follow-up = 2.0 years). Between groups, white and gray matter volumes were affected differentially during development. Controls had uniformly increasing volume in white matter, whereas the Wolfram group had stable (optic radiations) or decreasing (brainstem, ventral pons) white matter volumes. In gray matter, controls had stable (thalamus, cerebellar cortex) or decreasing volumes (cortex), whereas the Wolfram group had decreased volume in thalamus and cerebellar cortex. These patterns suggest that there may be early, stalled white matter development in Wolfram syndrome, with additional degenerative processes in both white and gray matter. Ideally, animal models could be used to identify the underlying mechanisms and develop specific interventions.
Wolfram syndrome is a rare multisystem disorder caused by mutations in WFS1 or CISD2 genes leading to brain structural abnormalities and neurological symptoms. These abnormalities appear in early stages of the disease. The pathogenesis of Wolfram syndrome involves abnormalities in the endoplasmic reticulum (ER) and mitochondrial dynamics, which are common features in several other neurodegenerative disorders. Mutations in WFS1 are responsible for the majority of Wolfram syndrome cases. WFS1 encodes for an endoplasmic reticulum (ER) protein, wolframin. It is proposed that wolframin deficiency triggers the unfolded protein response (UPR) pathway resulting in an increased ER stress-mediated neuronal loss. Recent neuroimaging studies showed marked alteration in early brain development, primarily characterized by abnormal white matter myelination. Interestingly, ER stress and the UPR pathway are implicated in the pathogenesis of some inherited myelin disorders like Pelizaeus-Merzbacher disease, and Vanishing White Matter disease. In addition, exploratory gene-expression network-based analyses suggest that WFS1 expression occurs preferentially in oligodendrocytes during early brain development. Therefore, we propose that Wolfram syndrome could belong to a category of neurodevelopmental disorders characterized by ER stress-mediated myelination impairment. Further studies of myelination and oligodendrocyte function in Wolfram syndrome could provide new insights into the underlying mechanisms of the Wolfram syndrome-associated brain changes and identify potential connections between neurodevelopmental disorders and neurodegeneration.
This chapter focuses on the neurocognitive effects of diabetes mellitus, particularly type 1 and type 2 diabetes. Although many of the side effects of diabetes—such as retinopathy, nephropathy, and peripheral neuropathy—are well known, the consequences on cognition have received comparatively little attention. These consequences will become more important as the rate of diabetes continues to rise at a staggering rate and millions of people are affected throughout the world. This chapter provides an overview of the current knowledge on how diabetes mellitus affects cognitive function, emphasizing the role of hypo- and hyperglycemia, while placing it in the context of diabetes as a whole.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.