Phylogenetic analysis and species identification of members of the genus Streptococcus were carried out using partial sequence comparison of the 16S rRNA gene (1468-1478 bp), rpoB, encoding the b subunit of RNA polymerase (659-680 bp), sodA, encoding the manganesedependent superoxide dismutase (435-462 bp), groEL, encoding the 60 kDa heat-shock protein (757 bp), and gyrB, encoding the B subunit of DNA gyrase (458-461 bp). For the first time, most species within the genus Streptococcus were represented in the study (65 strains, representing 58 species and nine subspecies). Phylogenies inferred from rpoB, sodA, gyrB and groEL sequence comparisons were more discriminative than those inferred from 16S rRNA gene sequence comparison, and showed common clusters. The minimal interspecies divergence was 0.3, 2.7, 0, 2.5 and 3.4 % for the 16S rRNA gene, rpoB, sodA, gyrB and groEL, respectively. In general, groEL partial gene sequence comparison represented the best tool for identifying species and subspecies and for phylogenetic analysis.
Partial sequences of the recN gene (1249 bp), which encodes a recombination and repair protein, were analysed to determine the phylogenetic relationship and identification of streptococci. The partial sequences presented interspecies nucleotide similarity of 56.4-98.2 % and intersubspecies similarity of 89.8-98 %. The mean DNA sequence similarity of recN gene sequences (66.6 %) was found to be lower than those of the 16S rRNA gene (94.1 %), rpoB (84.6 %), sodA (74.8 %), groEL (78.1 %) and gyrB (73.2 %). Phylogenetically derived trees revealed six statistically supported groups: Streptococcus salivarius, S. equinus, S. hyovaginalis/ S. pluranimalium/S. thoraltensis, S. pyogenes, S. mutans and S. suis. The 'mitis' group was not supported by a significant bootstrap value, but three statistically supported subgroups were noted: Streptococcus sanguinis/S. cristatus/S. sinensis, S. anginosus/S. intermedius/S. constellatus (the 'anginosus' subgroup) and S. mitis/S. infantis/S. peroris/S. oralis/S. oligofermentans/S. pneumoniae/S. pseudopneumoniae. The partial recN gene sequence comparison highlighted a high percentage of divergence between Streptococcus dysgalactiae subsp. dysgalactiae and S. dysgalactiae subsp. equisimilis. This observation is confirmed by other gene sequence comparisons (groEL, gyrB, rpoB and sodA). A high percentage of similarity was found between S. intermedius and S. constellatus after sequence comparison of the recN gene. To study the genetic diversity among the 'anginosus' subgroup, recN, groEL, sodA, gyrB and rpoB sequences were determined for 36 clinical isolates. The results that were obtained confirmed the high genetic diversity within this group of streptococci.
The long-term spontaneous evolution of humans and the human immunodeficiency virus (HIV) is not well characterized; many vertebrate species, including humans, exhibit remnants of other retroviruses in their genomes that question such possible endogenization of HIV. We investigated two HIV-infected patients with no HIV-related disease and no detection with routine tests of plasma HIV RNA or cell-associated HIV DNA. We used Sanger and deep sequencing to retrieve HIV DNA sequences integrated in the human genome and tested the host humoral and cellular immune responses. We noticed that viruses from both patients were inactivated by the high prevalence of the transformation of tryptophan codons into stop codons (25% overall (3–100% per gene) and 24% overall (0–50% per gene)). In contrast, the humoral and/or cellular responses were strong for one patient and moderate for the other, indicating that a productive infection occurred at one stage of the infection. We speculate that the stimulation of APOBEC, the enzyme group that exchanges G for A in viral nucleic acids and is usually inhibited by the HIV protein Vif, has been amplified and made effective from the initial stage of the infection. Furthermore, we propose that a cure for HIV may occur through HIV endogenization in humans, as observed for many other retroviruses in mammals, rather than clearance of all traces of HIV from human cells, which defines viral eradication.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.