Excess deaths from cardiovascular disease are a major contributor to the significant reduction in life expectancy experienced by people with schizophrenia. Important risk factors in this are smoking, alcohol misuse, excessive weight gain and diabetes. Weight gain also reinforces service users' negative views of themselves and is a factor in poor adherence with treatment. Monitoring of relevant physical health risk factors is frequently inadequate, as is provision of interventions to modify these. These guidelines review issues surrounding monitoring of physical health risk factors and make recommendations about an appropriate approach. Overweight and obesity, partly driven by antipsychotic drug treatment, are important factors contributing to the development of diabetes and cardiovascular disease in people with schizophrenia. There have been clinical trials of many interventions for people experiencing weight gain when taking antipsychotic medications but there is a lack of clear consensus regarding which may be appropriate in usual clinical practice. These guidelines review these trials and make recommendations regarding appropriate interventions. Interventions for smoking and alcohol misuse are reviewed, but more briefly as these are similar to those recommended for the general population. The management of impaired fasting glycaemia and impaired glucose tolerance ('pre-diabetes'), diabetes and other cardiovascular risks, such as dyslipidaemia, are also reviewed with respect to other currently available guidelines.These guidelines were compiled following a consensus meeting of experts involved in various aspects of these problems. They reviewed key areas of evidence and their clinical implications. Wider issues relating to primary care/secondary care interfaces are discussed but cannot be resolved within guidelines such as these.
The increase in cardiovascular disease and reduced life expectancy in schizophrenia likely relate to an increased prevalence of metabolic disturbances. Such metabolic risk factors in schizophrenia may result from both symptom-related effects and aetiological factors. However, a major contributory factor is that of treatment with antipsychotic drugs. These drugs differ in effects on body weight; the underlying mechanisms are not fully understood and may vary between drugs, but may include actions at receptors associated with the hypothalamic control of food intake. Evidence supports 5-hydroxytryptamine receptor 2C and dopamine D2 receptor antagonism as well as antagonism at histamine H1 and muscarinic M3 receptors. These M3 receptors may also mediate the effects of some drugs on glucose regulation. Several antipsychotics showing little propensity for weight gain, such as aripiprazole, have protective pharmacological mechanisms, rather than just the absence of a hyperphagic effect. In addition to drug differences, there is large individual variation in antipsychotic drug-induced weight gain. This pharmacogenetic association reflects genetic variation in several drug targets, including the 5-hydroxytryptamine receptor 2C, as well as genes involved in obesity and metabolic disturbances. Thus predictive genetic testing for drug-induced weight gain would represents a first step towards personalised medicine addressing this severe and problematic iatrogenic disease.
The treatment of severe mental illness, and of psychiatric disorders in general, is limited in its efficacy and tolerability. There appear to be substantial interindividual differences in response to psychiatric drug treatments that are generally far greater than the differences between individual drugs; likewise, the occurrence of adverse effects also varies profoundly between individuals. These differences are thought to reflect, at least in part, genetic variability. The action of psychiatric drugs primarily involves effects on synaptic neurotransmission; the genes for neurotransmitter receptors and transporters have provided strong candidates in pharmacogenetic research in psychiatry. This paper reviews some aspects of the pharmacogenetics of neurotransmitter receptors and transporters in the treatment of psychiatric disorders. A focus on serotonin, catecholamines and amino acid transmitter systems reflects the direction of research efforts, while relevant results from some genome-wide association studies are also presented. There are many inconsistencies, particularly between candidate gene and genome-wide association studies. However, some consistency is seen in candidate gene studies supporting established pharmacological mechanisms of antipsychotic and antidepressant response with associations of functional genetic polymorphisms in, respectively, the dopamine D 2 receptor and serotonin transporter and receptors. More recently identified effects of genes related to amino acid neurotransmission on the outcome of treatment of schizophrenia, bipolar illness or depression reflect the growing understanding of the roles of glutamate and γ-aminobutyric acid dysfunction in severe mental illness. A complete understanding of psychiatric pharmacogenomics will also need to take into account epigenetic factors, such as DNA methylation, that influence individual responses to drugs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.