ResumenEl objetivo del presente trabajo es comparar el comportamiento de los elementos estructurales sometidos a flexión o compresión después de haber sido reparados, mediante la sustitución del hormigón deteriorado por mortero de cemento Portland o mortero modificado con polímeros. En primer lugar, las probetas cúbicas se fabricaron con diferentes proporciones de reparación de mortero de cemento para ensayar a compresión, con los materiales colocados tanto en serie como en paralelo. Del análisis de resultados, se puede concluir que los sistemas mixtos - mortero de hormigón modificado con polímeros sometido a compresión pueden soportar cargas mayores que la reparación del mortero de cemento Portland, aunque en ningún caso pueden restaurar la capacidad de carga del hormigón. En los elementos sometidos a flexión, las vigas reparadas pueden alcanzar la resistencia inicial a la fractura de las vigas y soportar cargas aún mayores. Por lo tanto, la reparación de estructuras de cemento deterioradas con morteros de reparación es una buena alternativa, especialmente en elementos estructurales sometidos a flexión, y se realizan con morteros de cemento Portland. En las estructuras sometidas a compresión, es mejor utilizar morteros de reparación modificados con polímeros que aumentan la ductilidad cuando el mortero de reparación se ubica en serie con respecto a la carga.AbstractThe aim of the present work is to compare the behavior of structural elements subjected to bending or compression after having been repaired, by substituting the deteriorated concrete by Portland cement mortar or mortar modified with polymers. Firstly, cubic specimens were manufactured with different repair concrete-mortar proportions to be tested to compression, with the materials placed both in series and in parallel. From the results analysis, it can be concluded that mixed systems - polymer-modified concrete mortar subjected to compression can withstand greater loads than the repair Portland cement mortar, although they are in no case able to restore the load capacity of concrete. In elements subjected to bending, the repaired beams are able to achieve the initial fracture strength of the beams, and support even higher loads. Therefore, repairing deteriorated concrete structures using repair mortars is a good alternative, especially in structural elements subjected to bending, and performed using Portland cement mortars. In structures subject to compression, it is better to use repair mortars modified with polymers which increase the ductility when the repair mortar is located in series regarding the load
Deterioration of reinforced concrete structures prior to the lifetime for which they have been projected is a common problem in construction. The origin of this deterioration is due to different factors, ranging from the aggressiveness of the environment to the conditions of use and maintenance, making it necessary to know the damage origin in order to determine the more appropriate repair materials, repair methods, as well as to ensure the durability of those repairs. The aim of the present work is to compare the behavior of structural elements subjected to bending or compression after having been repaired, by substituting the deteriorated concrete by Portland cement mortar or mortar modified with polymers. Firstly, cubic specimens were manufactured with different repair concrete-mortar proportions to be tested to compression, with the materials placed both in series and in parallel. In addition, four concrete reinforced beams, which had previously been tested to bending until fracture, were repaired and tested to bending with different amounts and types of steel. From the results analysis, it can be concluded that mixed systems-polymer-modified concrete mortar subjected to compression can withstand greater loads than the repair Portland cement mortar, although they are in no case able to restore the load capacity of concrete. In elements subjected to bending, the repaired beams are able to achieve the initial fracture strength of the beams, and support even higher loads. Therefore, repairing deteriorated concrete structures using repair mortars is a good alternative, especially in structural elements subjected to bending, and performed using Portland cement mortars. In structures subject to compression, it is better to use repair mortars modified with polymers which increase the ductility when the repair mortar is located in series regarding the load.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.