Anserine (beta-alanyl-N(Pi)-methyl-L-histidine), a naturally occurring derivative of carnosine (beta-alanyl-L-histidine), is an abundant constituent of skeletal muscles and brain of many vertebrates. Although it has long been proposed to serve as a proton buffer, radicals scavenger and transglycating agent, its physiological function remains obscure. The formation of anserine is catalyzed by carnosine N-methyltransferase which exhibits unknown molecular identity. In the present investigation, we have purified carnosine N-methyltransferase from chicken pectoral muscle about 640-fold until three major polypeptides of about 23, 26 and 37 kDa coeluting with the enzyme were identified in the preparation. Mass spectrometry analysis of these polypeptides resulted in an identification of histamine N-methyltransferase-like (HNMT-like) protein as the only meaningful candidate. Analysis of GenBank database records indicated that the hnmt-like gene might be a paralogue of histamine N-methyltransferase gene, while comparison of their protein sequences suggested that HNMT-like protein might have acquired a new activity. Chicken HNMT-like protein was expressed in COS-7 cells, purified to homogeneity, and shown to catalyze the formation of anserine as confirmed by both chromatographic and mass spectrometry analysis. Both specificity and kinetic studies carried out on the native and recombinant enzyme were in agreement with published data. Particularly, several compounds structurally related to carnosine, including histamine and L-histidine, were tested as potential substrates for the enzyme, and carnosine was the only methyl group acceptor. The identification of the gene encoding carnosine N-methyltransferase might be beneficial for estimation of the biological functions of anserine.
Background:Anserine is an abundant dipeptide in vertebrate skeletal muscles. Results: We identified UPF0586 protein C9orf41 homolog as a carnosine N-methyltransferase, responsible for anserine formation in rat muscle. Conclusion: Besides being a carnosine N-methyltransferase, UPF0586 protein is likely to be a novel peptide or protein methyltransferase in eukaryotes. Significance: This molecular identification will help to elucidate physiological functions of UPF0586 protein in eukaryotes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.