A novel and innovative solution addressing wind turbines’ main bearing failure predictions using SCADA data is presented. This methodology enables to cut setup times and has more flexible requirements when compared to the current predictive algorithms. The proposed solution is entirely unsupervised as it does not require the labeling of data through work orders logs. Results of interpretable algorithms, which are tailored to capture specific aspects of main bearing failures, are merged into a combined health status indicator making use of Ensemble Learning principles. Based on multiple specialized indicators, the interpretability of the results is greater compared to black-box solutions that try to address the problem with a single complex algorithm. The proposed methodology has been tested on a dataset covering more than two year of operations from two onshore wind farms, counting a total of 84 turbines. All four main bearing failures are anticipated at least one month of time in advance. Combining individual indicators into a composed one proved effective with regard to all the tracked metrics. Accuracy of 95.1%, precision of 24.5% and F1 score of 38.5% are obtained averaging the values across the two windfarms. The encouraging results, the unsupervised nature and the flexibility and scalability of the proposed solution are appealing, making it particularly attractive for any online monitoring system used on single wind farms as well as entire wind turbine fleets.
Becoming a smart city is one of the top priorities in the urban agenda of many European cities. Among the various strategies in the transition path, local governments seek to bring innovation to their cities by encouraging multinational enterprises to deploy their green energy services and products in their municipalities. Knowing how to attract these enterprises implies that political leaders understand the multi-criteria decision problem that the energy sector enterprises face when deciding whether to expand to one city or another. To this end, the purpose of this study is to design a new manageable and controllable framework oriented to European cities’ public managers, based on the assessment of criteria and sub-criteria governing the strategic location decision made by these enterprises. A decision support framework is developed based on the AHP technique combined with an extended version of the hesitant fuzzy linguistic TOPSIS method. The main results indicate the higher relative importance of government policies, such as degree of transparency or bureaucracy level, as compared to market conditions or economic aspects of the city’s host country. These results can be great assets to current European leaders, they show the feasibility of the method and open up the possibility to replicate the proposed framework to other sectors or geographical areas.
The goal of this paper is to develop, implement, and validate a methodology for wind turbines’ main bearing fault prediction based on an ensemble of an artificial neural network (normality model designed at turbine level) and an isolation forest (anomaly detection model designed at wind park level) algorithms trained only on SCADA data. The normal behavior and the anomalous samples of the wind turbines are identified and several interpretable indicators are proposed based on the predictions of these algorithms, to provide the wind park operators with understandable information with enough time to plan operations ahead and avoid unexpected costs. The stated methodology is validated in a real underproduction wind park composed by 18 wind turbines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.