The ability to assemble discrete nanowires (NWs) with nanoscale precision on a substrate is the key to their integration into circuits and other functional systems. We demonstrate a bottom-up approach for massively parallel deterministic assembly of discrete NWs based on surface-guided horizontal growth from nanopatterned catalyst. The guided growth and the catalyst nanopattern define the direction and length, and the position of each NW, respectively, both with unprecedented precision and yield, without the need for postgrowth assembly. We used these highly ordered NW arrays for the parallel production of hundreds of independently addressable single-NW field-effect transistors, showing up to 85% yield of working devices. Furthermore, we applied this approach for the integration of 14 discrete NWs into an electronic circuit operating as a three-bit address decoder. These results demonstrate the feasibility of massively parallel "self-integration" of NWs into electronic circuits and functional systems based on guided growth.T he sustained progress in semiconductor technology introduces new challenges associated with the scaling and functionality of nanosize components. In the face of these challenges, alternative unconventional device and fabrication concepts based on bottom-up assembly of synthetic nanostructures are being intensively explored (1). These nanostructures, such as quantum dots (2), nanotubes (3), and nanowires (NWs) (4), can be chemically synthesized with exquisite control over their structures and properties down to the atomic level. On the other hand, their self-assembly alone is unlikely to produce the arbitrary geometries and long-range order that are required for their integration into functional systems. To realize such systems, bottomup assembly may be used as a complementary step in a sequence of top-down fabrication processes. Such a hybrid top-down/ bottom-up approach can be based on the directed self-assembly of building blocks onto a lithographically produced template to fit the design of an integrated functional system. Thus, the building blocks integrate themselves into the system, as one of the layers in the overall design. Here we demonstrate the feasibility of this "self-integration" concept with the parallel fabrication of large numbers of devices and complex circuits, based on guided growth of horizontal NWs (5).NWs are attractive building blocks for the bottom-up assembly of nanoscale devices and functional systems with potential applications in nanoelectronics (6), photonics (7), renewable energy (8), and biology (9). They can be synthesized with precisely controlled nanoscale dimensions and chemical compositions (10). Moreover, they may be structured to possess unique electronic properties, such as ballistic conductivity due to confinement of a 1D charge-carrier gas in core-shell NWs (11). The potential of NW-based electronics has been demonstrated for various NW materials (12). However, most studies were done at the single-device level. The main obstacle toward NW integration...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.