The bone marrow has emerged as a potentially important target in cardiovascular disease as it generates all leukocytes involved in atherogenesis. In the current study we evaluated whether a change in bone marrow functionality underlies the increased atherosclerosis susceptibility associated with high-density lipoprotein (HDL) deficiency. HDL deficiency in mice due to the genetic lack of hepatocyte-derived apolipoprotein A1 (APOA1) was associated with an increase in the Lin(-)Sca-1(+)Kit(+) bone marrow stem cell population and lymphoid primed multipotent progenitor numbers, which translated into a higher production and systemic flux of T cell subsets. In accordance with APOA1 deficiency-associated priming of stem cells to increase T lymphocyte production, atherogenic diet-fed low-density lipoprotein receptor knockout mice transplanted with bone marrow from APOA1 knockout mice displayed marked lymphocytosis as compared to wild-type bone marrow recipients. However, atherosclerotic lesion sizes and collagen contents were similar in the two groups of bone marrow recipients.
In conclusion, systemic lack of APOA1 primes bone marrow stem cells for T cell lymphopoiesis. Our data provide novel evidence for a regulatory role of HDL in bone marrow functioning in normolipidemic mice.
2-Hydroxypropyl-beta-cyclodextrin (2HPβCD) is able to bind and solubilize unesterified cholesterol and may therefore be able to reverse the deposition of cholesterol in macrophages within the aortic vessel wall, a hallmark of atherosclerotic cardiovascular disease. However, conflicting results regarding the potential of 2HPβCD to induce regression of established atherosclerotic lesions have been described. In the current study, we therefore also investigated the ability of 2HPβCD to stimulate cholesterol removal from macrophage foam cells in vitro and induce the regression of established atherosclerotic lesions in apolipoprotein E knockout (APOE KO) mice. In vitro studies using murine thioglycollate-elicited peritoneal macrophages verified that 2HPβCD is able to induce cholesterol efflux from macrophages in an ATP-binding cassette transporter-independent manner. Switching Western-type-diet-fed APOE KO mice with established atherosclerotic lesions back to a chow diet was associated with a reduction in the hypercholesterolemia extent and an increase in the absolute lesion size and plaque collagen-to-macrophage ratio. Importantly, parallel subcutaneous administration of 2HPβCD was not able to prevent the diet-switch-associated lesion growth or induce atherosclerosis regression. Although in our hands, 2HPβCD does effectively stimulate cellular cholesterol efflux from macrophages, we do not consider it worthwhile to further pursue 2HPβCD as therapeutic moiety in the atherosclerosis regression context.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.