Urban green infrastructure plays an increasingly significant role in sustainable urban development planning as it provides important regulating and cultural ecosystem services. Monitoring of such dynamic and complex systems requires technological solutions which provide easy data collection, processing, and utilization at affordable costs. To meet these challenges a pilot study was conducted using a network of wireless, low cost, and multiparameter monitoring devices, which operate using Internet of Things (IoT) technology, to provide real-time monitoring of regulatory ecosystem services in the form of meaningful indicators for both human health and environmental policies. The pilot study was set in a green area situated in the center of Moscow, which is exposed to the heat island effect as well as high levels of anthropogenic pressure. Sixteen IoT devices were installed on individual trees to monitor their ecophysiological parameters from 1 July to 31 November 2019 with a time resolution of 1.5 h. These parameters were used as input variables to quantify indicators of ecosystem services related to climate, air quality, and water regulation. Our results showed that the average tree in the study area during the investigated period reduced extreme heat by 2 °C via shading, cooled the surrounding area by transferring 2167 ± 181 KWh of incoming solar energy into latent heat, transpired 137 ± 49 mm of water, sequestered 8.61 ± 1.25 kg of atmospheric carbon, and removed 5.3 ± 0.8 kg of particulate matter (PM10). The values of the monitored processes varied spatially and temporally when considering different tree species (up to five to ten times), local environmental conditions, and seasonal weather. Thus, it is important to use real-time monitoring data to deepen understandings of the processes of urban forests. There is a new opportunity of applying IoT technology not only to measure trees functionality through fluxes of water and carbon, but also to establish a smart urban green infrastructure operational system for management.
Lime is one of the effective agents for reducing the phytoavailability of metals in contaminated acidic soils. However, previous studies have shown that lime alone cannot reduce metal phytotoxicity to the desired extent in such soils. The goal of this study was to evaluate the effect of different amendment combinations (lime with and without Feand/or Mn-based amendments) on plant growth. A sample of Histosol (0-5 cm) was collected around a Cu/Ni smelter near Monchegorsk, Murmansk region, exhibiting total Cu and Ni concentrations in the soil of 6418 and 2293 mg kg-1, respectively. Likewise, a sample of forest litter (0-15 cm) was collected around a Cu smelter near Revda, Sverdlovsk region, exhibiting total Cu concentration in the soil of 5704 mg kg-1. Fe-Mn oxides were sourced from ferromanganese nodules in the Gulf of Finland, and iron powder was used as a precursor for iron oxides. Perennial ryegrass was grown in pots for 21 days under controlled laboratory conditions. Two dolomite doses were tested: 5% w/w (giving a soil pH of 6.5) and 20% w/w (giving a soil pH of 7.4). Over-liming stunted plant growth; therefore, the dolomite dose was set at 5% in the further experiments of the study. Importantly, the addition of 0.5% and 1% of Fe-Mn-oxides or iron powder did not improve the efficacy of the lime amendment in promoting plant growth in the soils. Therefore, the issue of reducing plant exposure to metals remained unresolved in the soils under study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.