The weaponization of digital communications and social media to conduct disinformation campaigns at immense scale, speed, and reach presents new challenges to identify and counter hostile influence operations (IOs). This paper presents an end-to-end framework to automate detection of disinformation narratives, networks, and influential actors. The framework integrates natural language processing, machine learning, graph analytics, and a network causal inference approach to quantify the impact of individual actors in spreading IO narratives. We demonstrate its capability on real-world hostile IO campaigns with Twitter datasets collected during the 2017 French presidential elections and known IO accounts disclosed by Twitter over a broad range of IO campaigns (May 2007 to February 2020), over 50,000 accounts, 17 countries, and different account types including both trolls and bots. Our system detects IO accounts with 96% precision, 79% recall, and 96% area-under-the precision-recall (P-R) curve; maps out salient network communities; and discovers high-impact accounts that escape the lens of traditional impact statistics based on activity counts and network centrality. Results are corroborated with independent sources of known IO accounts from US Congressional reports, investigative journalism, and IO datasets provided by Twitter.
Estimating influence on social media networks is an important practical and theoretical problem, especially because this new medium is widely exploited as a platform for disinformation and propaganda. This paper introduces a novel approach to influence estimation on social media networks and applies it to the real-world problem of characterizing active influence operations on Twitter during the 2017 French presidential elections. The new influence estimation approach attributes impact by accounting for narrative propagation over the network using a network causal inference framework applied to data arising from graph sampling and filtering. This causal framework infers the difference in outcome as a function of exposure, in contrast to existing approaches that attribute impact to activity volume or topological features, which do not explicitly measure nor necessarily indicate actual network influence. Cramér-Rao estimation bounds are derived for parameter estimation as a step in the causal analysis, and used to achieve geometrical insight on the causal inference problem. The ability to infer high causal influence is demonstrated on real-world social media accounts that are later independently confirmed to be either directly affiliated or correlated with foreign influence operations using evidence supplied by the U.S. Congress and journalistic reports.
Using an observation by Lamb, namely that continuum sound wave propagation in sufficiently narrow channels is quasi-steady and isothermal, we obtain analytical predictions for the propagation of sound waves at small scales under non-continuum transport. We also extend Lamb's approach to include the effects of inertia and heat conduction for wave propagation at larger characterisitc scales descibed by continuum transport (no-slip and slip-flow regimes). Our theoretical predictions are compared to molecular-based direct Monte Carlo solutions of the Boltzmann equation. Very good agreement is found between theory and numerical solutions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.