MicroRNAs (miRNA) are endogenous noncoding small RNAs that regulate the activity of mRNAs. Many miRNA genes, including let-7a-3, are located in CpG islands, suggesting possible epigenetic regulation of their expression. Promoter CpG island methylation of tumor suppressor genes is involved in cancer development and progression. Using real-time methylation-specific PCR and real-time reverse transcription-PCR, we analyzed DNA methylation in the let7a-3 gene and miRNA expression of let-7a in 214 patients with epithelial ovarian cancer to assess the effect of let-7a-3 methylation on the expressions of let-7a as well as a possible target of let-7 regulation, insulin-like growth factor-II (IGF-II). The association of let-7a-3 methylation with patient survival outcomes was also evaluated. let-7a-3 methylation was detected in epithelial ovarian cancer, and the expression of let-7a was slightly affected by the methylation, but the effect was not substantial. The methylation of let-7a-3, however, was inversely correlated with IGF-II expression and positively with insulin-like growth factor binding protein-3 (IGFBP-3) expression. Patients with methylated let-7a-3 seemed to have reduced risk for death compared with those without, and the association was independent of patient age at surgery, tumor grade, disease stage, and IGF-II or IGFBP-3 expression. No association was found for let7a-3 methylation and disease progression. These results suggest that the let-7a-3 gene is methylated and the methylation may affect IGF-II expression and the survival of ovarian cancer patients. Further investigation of the role of miRNAs and their regulation in cancer is warranted.
Insulin-like growth factor-I (IGF-I) is known to be involved in the development and progression of several types of solid tumors including ovarian cancer. IGF-I levels in local tissue is subject to both endocrine and paracrine/autocrine regulation. To investigate which regulation is more importantly involved in IGF-I action in ovarian cancer regarding tumor progression, we analyzed IGF-I mRNA expression (assuming only from paracrine/autocrine regulation) and peptide concentration (subject to both endocrine and paracrine/autocrine regulation) as well as a genetic polymorphism (CA dinucleotide repeats) in 215 epithelial ovarian cancer patients. Genomic DNA, total RNA and cytosol proteins were extracted from fresh tumor samples. Two alternatively spliced IGF-I transcripts (IGF-IA and IGF-IB) were analyzed using real-time PCR. Cytosol levels of free and total IGF-I were measured with enzyme-linked immunosorbent assay. DNA sizing analysis was performed to determine the CA polymorphism. The study showed that the CA polymorphism had a weak influence on IGF-I expression, but no effect on tumor progression. High levels of free, not total, IGF-I peptide were associated with elevated risk of disease progression (HR = 2.06; 95%CI: 1.22-3.50), and the association was independent of clinicopathologic features of the disease. One of the IGF-I transcripts (IGF-IA) had a similar but less significant impact on disease progression. Women with high IGF-I mRNA and peptide were at greater risk for disease progression compared to those with low in both (HR = 2.13; 95%CI: 1.13-3.95). These findings support the notion that IGF-I is involved in ovarian cancer progression and free IGF-I plays a more important role in the disease. The study also suggests that both endocrine and paracrine/autocrine are involved in the regulation of IGF-I activity in ovarian cancer.
Mounting evidence suggests that neuronal PAS domain protein 2 (NPAS2) and other circadian genes are involved in tumorigenesis and tumor growth, possibly through their control of cancer-related biologic pathways. A missense polymorphism in NPAS2 (Ala394Thr) has been shown to be associated with risk of human tumors including breast cancer. The current study further examined the prognostic significance of NPAS2 in breast cancer by genotyping the Ala394Thr polymorphism and measuring NPAS2 expression. DNA extracted from 348 breast cancer tissue samples was analyzed for NPAS2 genotype using the TaqMan allelic discrimination assay. Of these, 287 also had total RNA available for use in real-time PCR assays to determine NPAS2 expression. NPAS2 genotypes and expression levels were analyzed for associations with prognostic outcomes, as well as correlations with clinical characteristics. A high level of NPAS2 expression was strongly associated with improved disease free survival (AHR = 0.43, 95% CI: 0.21–0.86, P trend = 0.022) and overall survival (AHR = 0.42, 95% CI: 0.19–0.96, P trend = 0.036). In addition, there was a borderline, but nonsignificant association between the NPAS2 genotype corresponding to Thr394Thr and disease free survival (AHR = 1.82, 95% CI: 0.96–3.46). The Ala/Ala, Ala/Thr, and Thr/Thr genotypes were also differentially distributed by tumor severity, as measured by TNM classification (χ2 (6df, N = 344) = 14.96, P = 0.020). These findings provide the first evidence suggesting prognostic significance of the circadian gene NPAS2 in breast cancer.
Our findings of high mRNA expression of IGFs and IGFBP-3 being associated with less aggressive tumors and favorable prognosis were consistent with previous observations, but were not supported by the measurement of tissue levels of IGF-I peptide and IGFBP-3 protein, suggesting that IGF mRNA expression and tissue levels of IGF peptides are regulated by different mechanisms and assessing these molecules in tumor tissue may have different implications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.