Despite many years of intense work investigating the function of nucleoid‐associated proteins in prokaryotes, their role in bacterial physiology remains largely unknown. The two‐dimensional protein patterns were compared and expression profiling was carried out on H‐NS‐deficient and wild‐type strains of Escherichia coli K‐12. The expression of approximately 5% of the genes and/or the accumulation of their protein was directly or indirectly altered in the hns mutant strain. About one‐fifth of these genes encode proteins that are involved in transcription or translation and one‐third are known to or were in silico predicted to encode cell envelope components or proteins that are usually involved in bacterial adaptation to changes in environmental conditions. The increased expression of several genes in the mutant resulted in a better ability of this strain to survive at low pH and high osmolarity than the wild‐type strain. In particular, the putative regulator, YhiX, plays a central role in the H‐NS control of genes required in the glutamate‐dependent acid stress response. These results suggest that there is a strong relationship between the H‐NS regulon and the maintenance of intracellular homeostasis.
Clostridium difficile is an emergent pathogen, and the most common cause of nosocomial diarrhea. In an effort to understand the role of small noncoding RNAs (sRNAs) in C. difficile physiology and pathogenesis, we used an in silico approach to identify 511 sRNA candidates in both intergenic and coding regions. In parallel, RNA–seq and differential 5′-end RNA–seq were used for global identification of C. difficile sRNAs and their transcriptional start sites at three different growth conditions (exponential growth phase, stationary phase, and starvation). This global experimental approach identified 251 putative regulatory sRNAs including 94 potential trans riboregulators located in intergenic regions, 91 cis-antisense RNAs, and 66 riboswitches. Expression of 35 sRNAs was confirmed by gene-specific experimental approaches. Some sRNAs, including an antisense RNA that may be involved in control of C. difficile autolytic activity, showed growth phase-dependent expression profiles. Expression of each of 16 predicted c-di-GMP-responsive riboswitches was observed, and experimental evidence for their regulatory role in coordinated control of motility and biofilm formation was obtained. Finally, we detected abundant sRNAs encoded by multiple C. difficile CRISPR loci. These RNAs may be important for C. difficile survival in bacteriophage-rich gut communities. Altogether, this first experimental genome-wide identification of C. difficile sRNAs provides a firm basis for future RNome characterization and identification of molecular mechanisms of sRNA–based regulation of gene expression in this emergent enteropathogen.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.