The biopolymer chitosan is widely used for the development of local hemostatic agents. However, the physicochemical parameters of chitosan that determine its hemostatic properties have not yet been determined. Standard quality control of chitosan-containing raw materials and medical products on its basis do not allow us to make a conclusion about the effectiveness of their use for stopping bleeding. The most reliable method for assessing hemostatic activity remains in vivo experiment on large animals. The aim of this study was to determine additional physicochemical parameters of chitosan, which would make it possible to predict its hemostatic activity without conducting a biological experiment. In this work, using the methods of nuclear magnetic resonance spectroscopy, spectrophotometry and viscometry, it has been shown that the ability to initiate hemostasis is depending of the molecular weight and degree of deacetylation of chitosan, but not enough linearly. The hemostatic properties in vitro increases in a series of samples with a relatively constant molecular weight with an increase in the degree of deacetylation. As well as in a series with the same degree of deacetylation with an increase in molecular weight. However, at molecular weight values more than 300 kDa, the viscosity of the polymer causes the opposite effect: with an increase in the degree of deacetylation, the hemostatic activity decreases. The best ability to initiate hemostasis have chitosan samples with a degree of deacetylation of 90.0%–97.4% and molecular weight 145.7–284.7 kDa, in which at pH of solution close to physiological, a significant part of the molecules transitioned from conformation state rigid rod to state globule. It was accompanied by an abrupt change in light transmission of the solution. It was concluded, that it is possible to study conformational states by spectrophotometry to assess the hemostatic activity of chitosan samples without performing biological experiment.
Development of a standard dosimetric facility with protection against external radiation background for the metrological support of highly sensitive radiation monitoring devices in accordance with the requirements of international standards .
Chitosan are biopolymers that are actively used for the production of local haemostatic agents. The physicochemical characteristics that determine its biological properties include the molecular weight and the deacetylation degree. However, there is no linear relationship between these parameters and haemostatic activity. The most reliable method of confirming the effectiveness is still in vivo experiments. The ability to initiate haemostasis depends on the conformational transition of chitosan macromolecules. The highest efficiency in vitro was for samples in which the transition of a significant part of the molecules from the ‘rigid rod’ state to the ‘globule’ occurred at physiological pH. It is proposed to expand the list of indicators of chitosan that can be controlled to evaluate the quality of raw materials, related to haemostatic activity, to include the definition of the conformational transition at physiological pH.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.