Climate change is causing damage to infrastructure, ecosystems, and social systems, including cultural heritage sites. In the European part of Russia, there are 20 UNESCO-listed cultural heritage sites situated in different climatic conditions. This study assesses the impact of climate change on these sites by using ERA5 re-analysis data to calculate two frost damage indices and two salt weathering indices for the period 1960–2020. The findings indicate a rise in frost damage and salt weathering at cultural heritage sites in northern Europe, primarily due to changes in air temperature and water in the atmosphere, which are the main parameters responsible for the destruction of stone and brick structures. Given the observed and predicted trends in the main meteorological parameters, the detrimental destructive impact of climate change on cultural heritage sites will only increase. In view of the significant length of Russia from north to south and the difference in climatic conditions, measures for the adaptation and protection of cultural heritage sites must be adapted to local conditions and consider the material from which the object is made.
The spatial distribution of compound extremes of air temperature and precipitation was studied over the territory of Eastern Europe for the period 1950–2018. Using daily data on air temperature and precipitation, we calculated the frequency and trends of the four indices—cold/dry (CD), cold/wet (CW), warm/dry (WD) and warm/wet (WW). The connection between these indices and large-scale patterns in the ocean–atmosphere system, such as the North Atlantic Oscillation (NAO), the East Atlantic (EA) and Scandinavia (SCAND) patterns, was also studied. The positive and statistically significant trends in the region were observed for the warm extremes (especially the WW index) in all seasons, with maximum values in the winter season, while negative trends were obtained for the cold extremes. The NAO index has a strong positive and statistically significant correlation with the warm compound indices (WD and WW) in the northern part of Eastern Europe in winter like the EA pattern, but with smaller values. The spatial distribution of the correlation coefficients between compound extremes and the SCAND index in the winter season is opposite to the correlation coefficients with the NAO index.
Recent studies show an increase in the frequency of compound extremes in air temperature and precipitation in many parts of the world, especially under dry and hot conditions. Compound extremes have a significant impact on all spheres of human activity, such as health, agriculture, and energy. Features of atmospheric circulation are closely related to the occurrence of anomalies in air temperature and precipitation. The article analyzes the relationship of atmospheric circulation modes with compound extremes that have had the greatest impact on the Atlantic–European region over the territory of Eastern Europe over the past 60 years on extreme air temperature and precipitation. Combinations of extreme temperature and humidity conditions (indices)— cold-dry (CD), cold-wet (CW), warm-dry (WD) and warm-wet (WW)—were used as compound extremes. Indices of compound extremes were calculated according to the E-OBS reanalysis data. Estimates of the relationship between two time series were carried out using standard correlation and composite analyses, as well as cross wavelet analysis. Phase relationships and time intervals for different climatic indices were different. The period of most fluctuations in the indices of compound extremes was from 4 to 12 years and was observed during 1970–2000. The coherent fluctuations in the time series of the WD and WW indices and the North Atlantic oscillation (NAO) index occurred rather in phase, those in the time series of the CD and WD indices and the Arctic oscillation (AO) index occurred in antiphase, and those in the time series of the WD and WW indices and the Scandinavia pattern (SCAND) index occurred in antiphase. Statistically significant increase in the number of warm compound extremes was found for the northern parts of the study region in the winter season with positive NAO and AO phases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.