Hydrogen solubility and diffusion in austenitic stainless steels, namely AISI 310, AISI 301LN and AISI 201, are studied with thermal desorption spectroscopy (TDS) after electrochemical potentiostatic hydrogen pre‐charging. Temperature dependencies of hydrogen desorption for all studied steels manifest a complex main peak caused by hydrogen releasing from the steel lattice by diffusion. Depending on the steel and heating rate the peak is situated from 350 to 500 K and its shape reflects a specific of hydrogen diffusion in stainless steels, which are multicomponent alloys. Analysis of the TDS curves is based on the hydrogen diffusion model taking into account trapping of hydrogen atoms in the energetically deep interstitial positions in the steel crystal lattice. Diffusion coefficient of hydrogen and its total content after the same charging procedure are obtained from the TDS curves and compared for the studied steels.
One of the most intricate issues of nuclear power is the long-term safety of repositories for radioactive waste. These repositories can have an impact on future generations for a period of time orders of magnitude longer than any known civilization. Several countries have considered copper as an outer corrosion barrier for canisters containing spent nuclear fuel. Among the many processes that must be considered in the safety assessments, radiation induced processes constitute a key-component. Here we show that copper metal immersed in water uptakes considerable amounts of hydrogen when exposed to γ-radiation. Additionally we show that the amount of hydrogen absorbed by copper depends on the total dose of radiation. At a dose of 69 kGy the uptake of hydrogen by metallic copper is 7 orders of magnitude higher than when the absorption is driven by H2(g) at a pressure of 1 atm in a non-irradiated dry system. Moreover, irradiation of copper in water causes corrosion of the metal and the formation of a variety of surface cavities, nanoparticle deposits, and islands of needle-shaped crystals. Hence, radiation enhanced uptake of hydrogen by spent nuclear fuel encapsulating materials should be taken into account in the safety assessments of nuclear waste repositories.
The aim of this study was to characterize the inclusions and precipitates of the six austenitic stainless steel test materials by the INCA analysis program as well as to examine the capability of inclusions and precipitates to act as hydrogen traps by utilizing the thermal desorption spectroscopy (TDS). Especially, the hydrogen trapping capability of nano‐sized Nb‐precipitates of the steel 204Cu/Nb was of interest. On the INCA results it was noticed that the average sizes of the inclusions as well as the distribution and the amount of the oxide inclusions were about the same in all test materials. In comparison to the other grades, the distribution of inclusions and precipitates was significantly different in the niobium‐alloyed 204Cu/Nb steel containing a large number of small micro‐ and nano‐sized niobium precipitates. In the TDS study, it was observed that the TDS spectra of 201B, 204Cu, and 204Cu/Nb were similar, although the inclusion and precipitation distribution of these steels differs considerably between the materials. Thus, it was assumed that the nano‐sized Nb‐precipitates or other inclusions were not able to trap sufficiently hydrogen to their interface, which would result in a better resistance against delayed cracking.
Constant load tests of high-strength carbon steels with different micro-alloying using strengths in the range of 1000-1400 MPa were performed at ambient temperature under continuous electrochemical hydrogen charging. Hydrogen markedly affects delayed fracture of all the studied steels. Fractography of the studied steels shows that fracture mechanism depends on the chemical composition of the studied steels and hydrogen-induced cracking exhibits intergranular or transgranular character occurring often in the form of hydrogen flakes. The size and chemical composition of non-metallic inclusions are analyzed by scanning electron microscopy and energydispersive X-ray spectroscopy. Hydrogen-induced cracking initiates at TiN/TiC particles in steels with Ti alloying. Crack paths are studied with electron backscatter diffraction mapping to analyze crack initiation and growth. The thermal desorption spectroscopy method is used to analyze the distribution of hydrogen in the trapping sites. The mechanisms of hydrogen effects on fracture of highstrength steels are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.