Recent climate warming and scenarios for further warming have led to expectations of rapid movement of ecological boundaries. Here we focus on the circumarctic forest–tundra ecotone (FTE), which represents an important bioclimatic zone with feedbacks from forest advance and corresponding tundra disappearance (up to 50% loss predicted this century) driving widespread ecological and climatic changes. We address FTE advance and climate history relations over the 20th century, using FTE response data from 151 sites across the circumarctic area and site‐specific climate data. Specifically, we investigate spatial uniformity of FTE advance, statistical associations with 20th century climate trends, and whether advance rates match climate change velocities (CCVs). Study sites diverged into four regions (Eastern Canada; Central and Western Canada and Alaska; Siberia; and Western Eurasia) based on their climate history, although all were characterized by similar qualitative patterns of behaviour (with about half of the sites showing advancing behaviour). The main associations between climate trend variables and behaviour indicate the importance of precipitation rather than temperature for both qualitative and quantitative behaviours, and the importance of non‐growing season as well as growing season months. Poleward latitudinal advance rates differed significantly among regions, being smallest in Eastern Canada (~10 m/year) and largest in Western Eurasia (~100 m/year). These rates were 1–2 orders of magnitude smaller than expected if vegetation distribution remained in equilibrium with climate. The many biotic and abiotic factors influencing FTE behaviour make poleward advance rates matching predicted 21st century CCVs (~103–104 m/year) unlikely. The lack of empirical evidence for swift forest relocation and the discrepancy between CCV and FTE response contradict equilibrium model‐based assumptions and warrant caution when assessing global‐change‐related biotic and abiotic implications, including land–atmosphere feedbacks and carbon sequestration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.